
Enhancing Debugging Skills of LLMs with Prompt Engineering

Keyu He*, Max Li*, Joseph Liu*
University of Southern California

{frankhe, qianqili, jliu7350}@usc.edu

Abstract

This paper presents a comprehensive study on
improving the debugging capabilities of Large
Language Models (LLMs) like GPT-3.5, fo-
cusing on the application of prompt engineer-
ing techniques. We explore the efficacy of
few-shot learning, chain-of-thought prompt-
ing, and a baseline zero-shot model in en-
hancing LLMs’ ability to debug code. Uti-
lizing static and dynamic evaluation metrics,
the study rigorously assesses the debugging
proficiency of these models. By introducing
different types of bugs, including procedural
and language model-generated errors, and ap-
plying varied prompting strategies, we pro-
vide a deeper understanding of LLMs’ de-
bugging capabilities. The results provide in-
sights into the limitation of debugging capa-
bilities of GPT-3.5 Turbo, even with the assis-
tance of various prompting techniques. Source
code of our evaluation method and bug gen-
eration techniques are in GitHub repository:
https://github.com/FrankHe2002/CSCI 499Fi-
nalProject

1 Introduction and Motivation

Large language models (LLMs), such as the GPT
(Brown et al., 2020) and CodeLlama (Rozière et al.,
2023) families, have shown promise in automating
coding tasks. However, their debugging skills re-
main limited and relatively untested. Simultane-
ously, debugging has become an important aspect
of development: Poor quality software in the US in
2018 costed approximately $2.8 trillion (Krasner,
2021). Additionally, the popularity of code com-
pletion services powered by LLMs, such as GitHub
Copilot, is rising. These services are not perfect,
and their code may need to be debugged as well.
Our research aims to evaluate and enhance the de-
bugging capabilities of LLMs through few-shot and
chain-of-thought approaches. We will establish a
baseline zero-shot prompt with no chain of thought
for comparative evaluation. By utilizing both static

and dynamic evaluation metrics, we aim to quanti-
tatively assess the debugging proficiency of these
LLMs and pave the way for their effective use in
debugging tasks.

2 Hypothesis

In this research, we posit that employing chain-of-
thought (Wei et al., 2023) prompt engineering tech-
niques or using few-shots (Fei-Fei et al., 2006) will
substantially elevate the debugging performance of
large language models. We anticipate that this tai-
lored prompting approach will yield improvements
in multiple evaluation metrics, serving as a quantifi-
able measure of debugging effectiveness. These ex-
pected outcomes were rigorously compared against
the baseline.

3 Methodology

3.1 Overview
Our base experiment design is as follows: First,
we gathered a dataset of pairs of buggy code and
their correct versions. Then we ask our model to
debug the code using one of four prompt variations:
zero-shot without chain-of-thought (CoT), zero-
shot with CoT, few-shot without CoT, and few-shot
with CoT. We take the outputted code and analyze it
using both static metrics, such as CodeBLEU (Ren
et al., 2020) and our novel CodeROUGE/CodeF1,
and dynamic metrics, in the form of test cases.

3.2 Dataset Collection and Bug Generation
To create our dataset, we had two primary require-
ments. One, each data pair needed to be rela-
tively independent. While the real-world distribu-
tion of bugs include many points where significant
amounts of context are needed, this is very difficult
to prompt. Therefore, we need a dataset where the
information necessary to find the bug can be found
in a relatively small number of tokens to be passed
into the model. Second, each code sample needed

https://github.com/FrankHe2002/CSCI499FinalProject
https://github.com/FrankHe2002/CSCI499FinalProject

to be runnable. In order to do dynamic analysis, we
need to be able to automate testing of each sample
on real test cases. An existing dataset that satisfies
both of these constraints could not be found. For
example, Bugs2Fix, while similar, is not runnable
and thus wouldn’t be able to be dynamically ana-
lyzed (Tufano et al., 2019).

With all this in mind, Java solutions to Leet-
code problems were chosen as our primary data
source. Java is a popular language, meaning
the model has some exposure to its syntax. It
is also more syntactically complex than a lan-
guage like Python, which allows us to test on
common usage errors. The solutions, and there-
fore bug-free versions of code, were easily ac-
quired from GitHub repositories; we specifically
used AnasImloul/Leetcode-Solutions (Imloul,
2023). The second step was the creation of the
buggy versions of each pair. To accomplish this,
we introduce a procedural bug generator and inves-
tigate LLM bug generation as an alternative.

3.2.1 Procedural Bug Generation
Our bug generator generates bugs based on com-
mon programming mistakes. In all cases, the gen-
erator locates some token and replaces or removes
it. These include, among others: Replacing array
access indices, removing syntactically important
characters, and replacing a boolean comparison op-
erator. In total, we have six cases, out of which
4 are logical errors as the code compiles, 1 is a
syntax error, and the last is the negative sample
(that is, no bugs). We include negative sampling to
simulate the possibility of a user asking the LLM to
debug code that has no bug. A variable number of
bugs are added to a given piece of code to generate
its buggy version; one example can be found in
Figure 1, and detailed information can be found in
appendix A.1.

3.2.2 Language Model Bug Generation
An alternative to a procedural approach to bug gen-
eration is using a language model. As large lan-
guage models are trained on extensive real-world
datasets, it can represent a wide spectrum of pro-
gramming errors that are commonly made by hu-
man programmers. This ensures that our testcases
more closely match the real-world distribution of
bugs. An example can be found in Figure 2, and
prompt design for bug generation can be found in
Appendix A.2. Note that the LLM bugs are more
complex, with certain keywords missing (break)

Figure 1: Example of procedural bug, where an array
access index has been modified.

Figure 2: LLM-generated bugs, demonstrating complex
errors

or function calls replaced (add, remove).

3.2.3 Data Filtering and Cleaning

To clean the data, the following steps were taken:

• Formatting: The LeetCode code snippets
were formatted using IntelliJ IDEA to fit a
standard format. This ensures that CodeBLEU
tokenization, which is based on whitespace
characters, is consistent. LLM output (that
is, the debugged code) also seems to follow
a standard format that the model has learned,
and we try to make sure that the inputs match
that also.

• Description Filter: All datapoints without
descriptions are removed from consideration.
Leetcode solution code snippets are short and
contain little information about the problem,
typically using variable names such as i, j,
k. As such, descriptions are important for the
model to determine what exactly constitutes a
bug.

• Length Filter: We remove 1 sample whose
solution is long; it runs the risk of generation
over the model’s context limit, which would
degrade performance.

3.3 Model Selection

We selected GPT-3.5 Turbo as the primary model
for debugging code. The model excels in under-
standing and generating human-like text, and can
thus be enhanced by prompting techniques like
chain of thought and few-shot learning. These tech-
niques have been shown to improve its performance
on a range of other tasks. It additionally offers a
good balance between reasoning ability and pure
memorization, which is significant risk for its larger
counterpart GPT-4. Both models have seen Leet-
code problems before, and the higher the parameter
count, the more likely it is to remember the answer
from training data instead of debugging it.

3.4 Baseline and Prompt Design

The baseline for our study is established using the
zero-shot, non-chain-of-thought debugging perfor-
mance of GPT-3.5 Turbo. In this baseline scenario,
the model is provided solely with the buggy code
and its corresponding problem description. Com-
parative analysis is conducted between this baseline
and three alternative prompts: zero-shot with chain
of thought, few-shot without chain-of-thought, and
few-shot with chain-of-thought. Details of our
prompt designs are in appendix A.3. Note that
for few-shot, we provide 5 examples.

3.5 Evaluation Metrics
Code debugged by the LLM was evaluated on two
types of metrics:

• Static evaluation, where it is evaluated based
on its similarity to the ground truth (correct
code)

• Dynamic evaluation, where it is run on test
cases to evaluate output correctness.

We discuss both in more detail.

3.5.1 Static Evaluation
The first metric we use is CodeBLEU:

CodeBLEU = α · BLEU

+ β · BLEUweight

+ γ · Matchast + δ · Matchdf

(1)

CodeBLEU evaluates the similarity between two
snippets of code using four factors: The original
BLEU score, weighted n-gram match, syntactic Ab-
stract Syntax Tree match, and semantic data-flow
match. We chose CodeBLEU as it more accurately
represents unique properties of code. First, code
has a strict format and unique instructions which
have no ambiguities. This is unlike natural lan-
guage, and thus any metric designed for language,
including BLEU and ROUGE, would be flawed.
Second, code has a limited vocabulary. While vari-
able names can change, the most common tokens
would be keywords such as int, while, or public.
The weighted n-gram match is similar to BLEU,
but modified to give more weight to these keywords.
This more accurately represents the layout and in-
structions of the code, rather than the exact variable
names used. Lastly, code can be represented as a
syntax tree, as opposed to the sequential structure
of natural language. The syntactic AST match
checks for code structure without taking into ac-
count variable names or values at all, and the se-
mantic data-flow match evaluates the inputs and
outputs (Ren et al., 2020).

To compute the score for some pair of buggy
code and debugged code, we label the ground truth
C0, the buggy code Cb, and debugged code Cd. We
can compute two scores

Sb = CodeBLEU(C0, Cb) (2)

Sd = CodeBLEU(C0, Cd) (3)

where Sb represents the score of the buggy code
compared to ground truth and Sd is the score of the

debugged code compared to ground truth. Then,
the net improvement of the debugging is the change
in scores:

∆S = Sd − Sb (4)

With this value, we can then say that ∆S > 0
means the model was able to debug effectively;
∆S = 0 represents that debugged code is approx-
imately the same as bugged code, and ∆S < 0
means the debugged code performed worse. When
analyzing results, we will be averaging ∆S over
all tested samples.

This method has two main limitations: First, due
to the nature of our bugs, Sb, Sd will both be quite
large: The majority of the code will still be identi-
cal between the buggy and debugged versions. In
instances where the model successfully identifies
and corrects the errors, ∆S may be quite small.
Conversely, swapping two lines would result in a
large dip in ∆S. We therefore use dynamic evalua-
tion as a second metric (discussed in 3.5.2), where
the exact ordering of instructions does not matter.

Second, CodeBLEU is precision based. It eval-
uates how much of the debugged code is relevant
or correct in relation to the reference code. It fol-
lows that CodeBLEU penalizes generations not in
ground truth, even if it’s possibly useful. An ex-
ample is the generation of helper functions. To
address this, we introduce CodeROUGE, a recall-
based technique that instead penalizes code found
in ground truth that is missing in the debugged
code. This distinction is crucial as it focuses on
the extent to which the model’s output captures all
the relevant aspects of the reference solution. Sim-
ilar to ROUGE (Recall-Oriented Understudy for
Gisting Evaluation, Lin (2004)), which has been
effectively used in evaluating text summarization,
CodeROUGE offers an alternative perspective on a
model’s debugging capabilities. This is especially
important in cases where the bug is a single miss-
ing character. As such, CodeROUGE serves as a
complementary metric to CodeBLEU.

Computing CodeROUGE is quite simple: We
swap out the various matches in CodeBLEU for a
recall-based match, as opposed to precision. Con-
sider the simplified case of BLEU, where we define
C(s, y) to be the number of times s appears at a
substring of y, y as the reference (the ground truth)
and ŷ as the candidate (the buggy code). Then the
modified n-gram precision can be written as:

p(ŷ, y) =
Σsmin(C(s, ŷ), C(s, y))

ΣsC(s, ŷ)
(5)

and the modified n-gram recall, which we use for
CodeROUGE, can be written as:

r(ŷ, y) =
Σsmin(C(s, ŷ), C(s, y))

ΣsC(s, y)
(6)

Note that the only difference is that we are counting
over the reference in the denominator. We perform
similar replacements in the remaining three factors
to compute CodeROUGE.

As we have precision and recall, we can com-
pute an F1 score also. This score, which we call
CodeF1, offers a balanced number that does not
penalize extra code as heavily, but also doesn’t ig-
nore syntactically important missing characters in
generated code. We define CodeF1 also as the sum
of four factors, where each factor is the harmonic
mean between its recall and precision based vari-
ants. For the modified n-gram match, for example,
we define the corresponding component:

F1(ŷ, y) =
2 · p′(ŷ, y) · r′(ŷ, y)
p′(ŷ, y) + r′(ŷ, y)

(7)

where p′ and r′ are BLEU scores, including both
the geometric mean over multiple n-grams and the
brevity penalty. We then perform a weighted sum
over the four components like CodeBLEU.

3.5.2 Dynamic Evaluation

Beyond the static analysis provided by CodeBLEU,
CodeROUGE, and CodeF1, we incorporate dy-
namic analysis, specifically focusing on the per-
centage of test cases passed by actually running the
code. This aspect of our methodology is particu-
larly important, as it addresses a key limitation in
static code evaluations. In instances where GPT
has made substantial modifications to the original
code, these changes often result in lower scores
from static evaluation metrics, despite potentially
better runtime performance or correctness. By ex-
ecuting the code and measuring its performance
against a set of test cases, we can more accurately
assess its functional correctness. This dynamic
analysis, therefore, serves as a crucial counterbal-
ance to static metrics, ensuring that our evaluation
of the model’s debugging effectiveness is not only
based on syntactic and semantic correctness but
also on the practical, real-world functionality of
the debugged code.

Status Score
Accepted 1

Compilation Error 0
Other Proportion of Cases

Passed (e.g. 0.5 for
30/60 passed)

Table 1: Dynamic Evaluation Scores

To evaluate performance at runtime, an auto-
mated script was developed that takes each sam-
ple and tests its debugged and buggy version on
Leetcode’s website. The resulting status is scraped
and converted to a score based on Table 1. These
scores have a minimum of 0 and a maximum of 1.
Similarly to CodeBLEU, the exact value does not
matter; instead, we wish to investigate whether the
debugged code did better on average. Therefore,
we compute the difference:

∆SLC = SLC,d − SLC,b (8)

where SLC,d, SLC,b represent the Leetcode scores
from Table 1 for debugged and buggy scores, re-
spectively. As with BLEU, a positive number rep-
resents improvement.

4 Results & Discussion

4.1 Static Evaluation Results
We evaluated each of the four prompts using Code-
BLEU, CodeROUGE, and CodeF1 over a dataset of
approximately 1700 code samples, and the results
are located in Table 2. For each prompt type, we in-
serted the relevant buggy code and problem descrip-
tion into the template listed in appendix A.3. After
trimming the results and verifying that the output is
valid, it is evaluated using the three metrics. These
scores are then averaged over all samples; recall
that positive numbers signify improvements, while
negative numbers signify worse outputs.

Zero-Shot, no CoT Zero-Shot, with CoT

∆SCB -0.1072 -0.2712
∆SCR -0.1143 -0.2828
∆SCF1 -0.1123 -0.2801

Few-Shot, no CoT Few-Shot, with CoT

∆SCB -0.1291 -0.2353
∆SCR -0.1374 -0.2475
∆SCF1 -0.1352 -0.2445

Table 2: Static Evaluation Scores
Our first observation is that generally speaking,

outputs are more dissimilar than inputs; that is, the

model is generally making the code worse. Addi-
tionally, the change is relatively large, with scores
differing by around 0.2 on average. We plot the
distributions of our baseline and the few-shot with
chain-of-thought CodeF1 scores in black (Figure
3). We notice a large and heavy tail which seems
to be pulling down the average. Further analysis
reveals that the vast majority of these were out-
puts that had a different number of lines of ac-
tual code than the input. That is, after removing
blank lines, the debugged code had been exten-
sively modified by the model. Removing these
"mismatched" points, which account for around
35% of our output, shrinks the tail significantly and
results in far better results (Table 3); the filtered re-
sults are shown in green. This behavior occurs with
different prompts as well. As a result, we make the
observation that GPT-3.5 Turbo is a very opinion-
ated model - it likes to write code a certain way,
and even when asked to only debug existing code,
will often rewrite portions to fit its understanding.
As CodeBLEU, CodeROUGE, and CodeF1 do not
take this into account, it results in lower scores.
Using an alternative model, such as GPT-4, which
has been trained on a more extensive dataset, is a
potential solution to addressing this problem. Al-
ternatively, a more targeted prompt may be able
to limit GPT’s formatting opinions, although the
extent to which this can help is unknown.

Figure 3: CodeF1 Score Distribution

Zero-Shot, no CoT Zero-Shot, CoT

∆SCF1 -0.1123 -0.2801
∆SCF1,F iltered -0.0207 -0.0291

Few-Shot, no CoT Few-Shot, CoT

∆SCF1 -0.2445 -0.1352
∆SCF1,F iltered -0.0219 -0.0299

Table 3: ∆SCF1 before/after mismatch removal
Secondly, we compare results with and without

chain-of-thought, and with and without few-shot
learning. Surprisingly, chain-of-thought seems to

generally perform worse when added in all metrics,
with a lower ∆S score than their non-CoT coun-
terparts, whether with or without few-shot. We
hypothesize that this is primarily a result of format-
ting issues. After removing the mismatched points,
the scores between CoT and without CoT are much
closer. GPT-3.5 also reformatted more samples
than were filtered; only samples with mismatched
line numbers were removed, while many samples
had reorganized contents in the same number of
lines. However, it is difficult to filter out even more:
The line between debugging and reformatting is
blurry in many cases, and even a human would
have a hard time distinguishing.

Another possible explanation is that chain-of-
thought "distracts" the model from the output for-
mat it is supposed to copy. It is reasonable to be-
lieve that in the training distribution, explanations
of code are typically followed by code formatted in
a standard way. The model then has a higher prob-
ability of just following the format of its training
distribution rather than what it has been given.

Our second comparison is between few-shot and
zero-shot. The results seem to be mixed: When
the model receives a chain-of-thought prompt, few-
shot seems to improve results. However, without
CoT, zero-shot performs better. We could not find
any numerical explanation as to why this is the case.
We hypothesize that this may be a combination
of two factors: First, with CoT, the model learns
what kind of errors to be looking for. The few-
shot serves its purpose of showing the model what
it should be focusing on, and therefore improves
results. In zero-shot, on the other hand, the model
is asked to explain without examples. It does so out
of its training distribution instead, which contains
much more complex bugs as shown in 3.2.2 and
Figure 2. It tries to find complex explanations for a
simple bug, and ends up attempting to "fix" valid
code.

Lastly, we analyze the difference between Code-
BLEU and CodeROUGE. For the most part, the
differences seem to be quite similar, with ∆S for
CodeROUGE being marginally lower than its Code-
BLEU counterpart. This roughly means that the
model’s output is shorter and more conservative.
Investigating samples, however, does not seem
to yield significant observations; a regression be-
tween the CodeBLEU and CodeROUGE scores
also yields an R2 ≈ 0.9975, showing that the
two are highly correlated. We will primarily use
CodeF1 as it is able to represent both metrics well

without significant information loss.

4.2 Dynamic Evaluation Results
We now move on to dynamic evaluation. Due to
limitations of the Leetcode website, evaluations
take significantly longer. The scores (Table 4)
are therefore averaged over a random selection of
around 70 problems. Note that all 4 prompt varia-
tions use the same selection of problems.

Zero-Shot, no CoT Zero-Shot, with CoT

∆SLC -0.0109 0.0167

Few-Shot, no CoT Few-Shot, with CoT

∆SLC -0.0170 0.0137

Table 4: Dynamic Eval Scores
The results for the Leetcode evaluation are much
closer to the hypothesis; when CoT is included,
we achieve positive scores, showing there is some
improvement in model performance. That is,
even while CodeF1 scores were worse than their
non-CoT counterparts, the CoT prompts are able to
generate code that fixes bugs more effectively. This
discrepancy can be explained by formatting errors,
as mentioned in the previous section; formatting
affects CodeF1 scores, but not code execution flow.
However, we do note the smaller sample size of
the Leetcode evaluation, so this number may need
to be refined.

Secondly, we note that few-shot seems to de-
crease performance across the board. Investigating
the samples, few-shot seems to be worse at locating
syntax errors than its zero-shot counterpart. How-
ever, as there are too few samples to work with, this
may be a result of chance rather than a meaningful
correlation.

4.3 LLM Generated Bugs
Lastly, we run a fast analysis of LLM generated
bugs to investigate their feasibility. The bugs are
generated according to section 3.2.2. We then ask
it to debug the code it generated using the same
prompts as before. We notice a score improvement
in all 4 categories of around 0.07 points over the
procedural bugs. Plotting the scores additionally re-
sulted in a much lighter tail than before. We believe
that this has two primary causes: First, the bugs
that the procedural algorithms produces are more
likely to be out-of-distribution, as GPT-generated
bugs are, by definition, in-distribution. Second, the
lighter tail could be caused by formatting: GPT is
unlikely to reformat code that it generated itself,

resulting in higher scores across the board. It is
evident that in order to evaluate this performance
correctly, we will need to use a different language
model to minimize the effects of a favorable gener-
ated bug distribution.

4.4 Evaluation Metrics

Overall, the CodeROUGE/CodeBLEU/CodeF1
metrics seem to be too sensitive to formatting to
accurately represent code performance. Leetcode,
on the other hand, only works on smaller datasets
due to time constraints. Additionally, we noticed
that Leetcode is a very binary metric, with the ma-
jority of samples receiving a 1 or a 0. Code that
seems to compile, for example, often receive 0’s
due to array access errors, which leaves very little
room for partial correctness. It may be useful to
investigate other potential avenues for evaluation
metrics. For example, approaching this problem
from a background of formal verification, which
is exclusively focused on correctness of code, may
yield insights in this direction.

4.5 Related Work

4.5.1 Chain-of-Thought Assists LLM
Reasoning

Liu et al. (2023b) and Wei et al. (2023) inves-
tigate the potential of chain-of-thought prompts
in making complex reasoning more accessible to
LLMs. They share a common goal of enhancing
the model’s ability to perform tasks that necessi-
tate advanced logical and sequential thinking. This
research aligns with our work by emphasizing the
importance of step-by-step reasoning and logical
problem solving, a key aspect we explore in de-
bugging tasks with large language models. Their
approach of using chain-of-thought instructions to
facilitate complex reasoning tasks offers insights
into potential methods for enhancing debugging
skills in language models.

In addition, the paper "Improving ChatGPT
Prompt for Code Generation" explored various
prompt design strategies for enhancing code gener-
ation (Liu et al., 2023a). In particular, they recur-
sively improve prompts by repeatedly modifying
and combining their best-performing prompts. This
is a potential path for further exploration.

4.5.2 Pretrained Models for Coding Tasks
The paper “CodeBERT: A Pre-Trained Model for
Programming and Natural Languages” (Feng et al.,

2020) and “CodeT5: Identifier-aware Unified Pre-
trained Encoder-Decoder Models for Code Un-
derstanding and Generation” (Wang et al., 2021)
demonstrate two LLMs trained on coding tasks,
enhancing their understanding of code structures.
Code T5 uses a unified pre-training approach, com-
bining denoising sequence-to-sequence training
with identifier-aware tasks. CodeBERT’s training
approach enables it to comprehend code in a way
that mirrors human developers. Both of these mod-
els are promising targets for further evaluation.

4.5.3 Code Completion Fails with Bugs

Dinh et al. (2023) reveals a significant challenge
for Large Language Models (LLMs) like CodeGen
and InCoder in code completion tasks. Specifically,
LLMs’ performance sharply declines in scenarios
where the context contains buggy code. These in-
sights suggests that the difficulty observed in GPT-
3.5 for debugging tasks may be linked to their in-
herent struggles with handling the flawed code seg-
ments that they are asked to debug, a problem that
persists even in models specifically fine-tuned for
coding tasks.

5 Conclusion

This research provides insights into the limitations
of Large Language Models (LLMs), particularly
GPT-3.5, in performing debugging tasks. Despite
employing various prompt engineering techniques,
including few-shot learning and chain-of-thought
prompting, our results indicate that these models
struggle to effectively debug code. The study high-
lights the challenges faced by LLMs, such as their
tendency to reformat code, which impede their de-
bugging efficiency. The use of metrics like CodeF1
and Leetcode evaluation quantify these limitations
and demonstrate potential avenues for improve-
ment. These findings underscore the need for a
more nuanced approach to leveraging LLMs in
software development, particularly in tasks requir-
ing precise and logical code correction. Moving
forward, there is a clear opportunity to explore al-
ternative models, refine prompt engineering meth-
ods, and integrate more sophisticated evaluation
metrics to enhance the debugging capabilities of
LLMs. We hope this work serves as a foundation
for further research, guiding future efforts towards
developing LLMs that can more effectively assist
in complex programming tasks like debugging.

6 Acknowledgements

We extend our gratitude to Dr. Swabha
Swayamdipta for offering crucial guidance and in-
sights that shaped our methodology. Our apprecia-
tion also goes to Avi Thawani, whose recommen-
dations on evaluation metrics beyond CodeBLEU
were invaluable. We are grateful to Mozhdeh
Gheini for steering the direction of our project.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Ne-
grinho, Leonard Lausen, Sheng Zha, and George
Karypis. 2023. Large language models of code fail
at completing code with potential bugs.

Li Fei-Fei, R. Fergus, and P. Perona. 2006. One-
shot learning of object categories. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
28(4):594–611.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and natu-
ral languages.

Anas Imloul. 2023. Leetcode solutions.

Herb Krasner. 2021. The cost of poor software quality
in the us: A 2020 report. Technical report, Consor-
tium for Information & Software Quality (CISQ),
USA.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang,
Haibo Hu, Xiaohong Zhang, and Meng Yan. 2023a.
Improving chatgpt prompt for code generation.

Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli
Zhang, Qiji Zhou, and Yue Zhang. 2023b. Logi-
cot: Logical chain-of-thought instruction-tuning data
collection with gpt-4.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio

Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2019. An empirical study on learning bug-
fixing patches in the wild via neural machine transla-
tion.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H.
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2306.03438
http://arxiv.org/abs/2306.03438
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1109/TPAMI.2006.79
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2002.08155
https://github.com/AnasImloul/Leetcode-solutions
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report/
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report/
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2305.08360
http://arxiv.org/abs/2305.12147
http://arxiv.org/abs/2305.12147
http://arxiv.org/abs/2305.12147
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/1812.08693
http://arxiv.org/abs/1812.08693
http://arxiv.org/abs/1812.08693
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903

A Appendix: Dataset Details

Generated bugs fall into one of five categories, or
the negative case. Examples of each of the five
cases are shown below.

A.1 Procedural Bugs

1. Replace array index with another value

Figure 4: Replace array index with another value

2. Remove a syntactically important charac-
ter

Figure 5: Remove a syntactically important character

3. Replace a math operator with a random
other operator

Figure 6: Replace a math operator with a random other
operator

4. Replace or modify a hardcoded int

Figure 7: Replace or modify a hardcoded int

5. Replace a boolean comparison operator

Figure 8: Replace a boolean comparison operator

A.2 Prompt for GPT Bug Generation
Below is the prompt we used to ask GPT-3.5 Turbo
to generate bugs given some code.

Below is a java code:
// code //
Here is the problem that the code is solving.
// problem //
Given that this code have the correct imple-

mentation of the problem, your job now is to
introduce one bug in this code that could cause
the compile time error/ runtime error. Make
sure not to indicate where you make the bug
so that some one else can test their ability of
debugging.

When generating the bug, try to create bugs
that are likely made by general programmers.

A.3 Prompt Design
For our prompts, which are provided below, we
make a few observations. First, we use the phrase
"may be buggy". This reminds the model that the
code may not have a bug and to not look for bugs
that do not exist, as we have negative samples. Sec-
ond, we try to prevent the model from rewriting
code using the phrases "using minimal changes"
and "do not optimize". For CoT, we ask the model
to explain reasoning, while telling the model ex-
plicitly to not explain when not using CoT. Lastly,
we ask it to format the code in markdown for easier
parsing.

1. Zero-shot, without CoT (Baseline)

The provided Java code may be buggy.
Fix the bug if one exists, using minimal
changes. Do not reorganize. Do not op-
timize. Do not provide explanation or
justification. Format your code in mark-
down.

<Problem Description>

```java

<CODE>

```

2. Zero-shot, with CoT

The provided Java code may be buggy.
Fix the bug if one exists, using minimal
changes. Explain the reasoning process,
thinking step-by-step, for identifying and
fixing the bug. Do not optimize. Do
not provide explanation or justification.
Format your code in markdown.

<Problem Description>

```java

<CODE>

```


3. Few-shot, without CoT

The provided Java code may be buggy.
Fix the bug if one exists, using minimal
changes. Do not optimize. Do not pro-
vide explanation or justification. Format
your code in markdown.

<Problem Description>

Example #1: <CODE>

Example Fix #1: <CODE>

<Four other examples and fixes>

buggy code:

```java

<CODE>

```

4. Fewshot, with CoT

The provided Java code may be buggy.
Fix the bug if one exists, using minimal
changes. Do not optimize. Do not pro-
vide explanation or justification. Format
your code in markdown.

<Problem Description>

Example #1: <CODE>

Example Fix #1: <CODE>

Explanation for the fix

<Four other examples and fixes>

buggy code:

```java

<CODE>

```

For <Problem Description>, both description
of the problem context in natural language and con-
strains that specify input and output of the expected
behaviour of the program is provided. Below is an
example that demonstrates this:

...
Code Description:
The function repeatChar takes a character

c and an integer times, and returns a string
consisting of the character c repeated times
times.

Constraints:
times >= 0
c is a valid character
...

For <Example> and <Example Fix>, we provide
a buggy code and how the bug is fixed in a correct
version. One example is on the next page.

...
Code:
```java
class Solution {
public int findMax(int[] nums) {

int max = nums[0];
for (int i = 1;
i <= nums.length; i++) {
if (nums[i] > max) {
max = nums[i];

}
}
return max;
}

}
```
Fix:
```java
class Solution {
public int findMax(int[] nums) {
int max = nums[0];
for (int i = 1;
i < nums.length; i++) {

if (nums[i] > max) {
max = nums[i];

}
}
return max;
}

}
```
...

For few-shot with chain of thought, we also pro-
vide explanations for where the bugs is and why it
should be fixed according to the sample fix. Specif-
ically, our explanations answer four key questions:

• What is the bug?

• Where is it?

• Why does our code lead to a bug?

• How do we fix it?

Below is explanation for the previous example:
...

Example #1: <CODE>
Example Fix #1: <CODE>
Explanation:
The original code causes an ‘ArrayIndex-

OutOfBoundsException‘ due to the loop con-
dition ‘i <= nums.length‘, which attempts to
access an index out of the array’s bounds. In
Java, array indices range from 0 to ‘length - 1‘.
The fix is changing the loop condition to ‘i <
nums.length‘, ensuring the loop iterates only
within the array’s valid range.

...

	Introduction and Motivation
	Hypothesis
	Methodology
	Overview
	Dataset Collection and Bug Generation
	Procedural Bug Generation
	Language Model Bug Generation
	Data Filtering and Cleaning

	Model Selection
	Baseline and Prompt Design
	Evaluation Metrics
	Static Evaluation
	Dynamic Evaluation

	Results & Discussion
	Static Evaluation Results
	Dynamic Evaluation Results
	LLM Generated Bugs
	Evaluation Metrics
	Related Work
	Chain-of-Thought Assists LLM Reasoning
	Pretrained Models for Coding Tasks
	Code Completion Fails with Bugs

	Conclusion
	Acknowledgements
	Appendix: Dataset Details
	Procedural Bugs
	Prompt for GPT Bug Generation
	Prompt Design

