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1 Introduction

1.1 Aug 26, Induction, Well-Ordering Principle(WOP)

• Twin prime conjecture. Goldbach’s conjecture

• Pythagorean triples and Fermat’s Last Theorem

• The primes p ≡ 1 (mod 4) are sums of two squares

Theorem

(a) Any right triangle with integer side lengths does not have area that is a
square number

(b) It can never be twice a square number

It is equivalent to study the equations

y2 = x3 − d2x for x, y ∈ Q

with d = 1, 2 respectively. (They have trivial solutions {(0, 0), (±d, 0)})

Equations of the form
y2 = f(x)

where f(x) is a polynomial of degree 3 are called elliptic curves.

Elliptic curve cryptography.
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1.1.1 Induction

Suppose you have a sequence of statements S1, S2, S3, . . .

Suppose you show that:

(a) S1 is true,

(b) Whenever Sk is true, Sk+1 is also true.

Then all Sn are true.

1.1.2 Well-Ordering Principle

If S in N = {1, 2, 3, . . . } that is nonempty, then it has a minimal element, i.e.,
there is a in S s.t. ∀b ∈ S, a ≤ b.

Prove that WOP =⇒ Induction

Proof. Let S = {k ∈ N : Sk is true}. It suffices to show that S = N. Assume
the contrary that S ̸= N.
Let T := N\S, we are assuming that T ̸= ∅, and we want to reach a contradic-
tion. By the well-ordering principle, T has a minimal element m.
Since S1 is true, 1 ∈ S, and so 1 /∈ T =⇒ m ≥ 2.
Consider m − 1 ≥ 1. Since m is minimal, m − 1 is not in T =⇒ m − 1 is in
S =⇒ Sm−1 is true.
From (b), we know then Sm−1 is true =⇒ Sm is true.
Therefore, Sm is true =⇒ m ∈ S =⇒ m /∈ T .

But m is in T , we have a contradiction.

Proposition 1. In :=
∫∞
0
tne−t dt = n! for n ∈ N.

Proof. We use induction. The base case is that I0 = 1.
Indeed,

I0 =

∫ ∞

0

e−t dt = −e−t
∣∣∣∣∞
0

= 0− (−1) = 1

Now, it suffices, by induction, to show that if Ik = k!, then Ik+1 = (k + 1)!.
We have

Ik+1 =

∫ ∞

0

tk+1e−t dt

(integration by parts)(u = tk+1, v = −e−t, du = (k + 1)tk dt, dv = e−t dt)

= −tk+1e−t
∣∣∣∣∞
0

+

∫ ∞

0

(k + 1)tke−t dt

= 0 + (k + 1)Ik

= (k + 1)k!

= (k + 1)!
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Hence we prove In = n! by induction.

1.2 Aug 29

Proposition 2. Sn := 12 + 22 + · · ·+ n2 = n(2n+1)(n+1)
6

Proof. We apply induction on n. The base case is when n = 1, in this case,
S1 = 12 = 1.

We now show that for any k, if

Sk = k(2k + 1)(k + 1) = 6,

then

Sk+1 =
(k + 1)(2(k + 1) + 1)((k + 1) + 1)

6

Indeed, we have

Sk+1 = 12 + 22 + · · ·+ k2 + (k + 1)2

= Sk + (k + 1)2

=
k(2k + 1)(k + 1)

6
+ (k + 1)2

=
k(2k + 1)(k + 1) + 6(k + 1)2

6

=
(k + 1)(k(2k + 1) + 6(k + 1))

6

=
(k + 1)(2k2 + k + 6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(2k + 3)(k + 2)

6
.

Proposition 3. Suppose n ∈ N and we have a 2n · 2n board with a corner
removed. Then we can tile it using tiles of the shape L (made up by three tiles).

Proof. We apply induction on n. If n = 1, then our board is simply L. So we
are done with the base case.

Now suppose we have such a tiling for 2n · 2n boards. (with corner removed)

We want to show that such a tiling is possible for 2n+1 · 2n+1 boards with a
corner removed.
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Figure 1: Way of tiling for 2n · 2n board

We first separate the board into four 2n · 2n boards. As figure 1 shows, we add
a L tile at the middle of the boards, hence all 2n · 2n boards are missing a tile.
By induction hypothesis, each 2n · 2n board missing a corner can be tiled by L
shapes.

Therefore, the whole board can be tiled by L-shape tiles.

Proposition 4. f(n) :=

√
2 +

√
2 +

√
2 +

√
2 + · · ·+

√
2 = 2 cos π

2n+1 . (We

have n 2’s)

e.g.

√
2 = 2 cos

π

4√
2 +

√
2 = 2 cos

π

8√
2 +

√
2 +

√
2 = 2 cos

π

16
.

Proof. When n = 1, f(1) =
√
2 while 2 cos π

21+1 =
√
2 as well. Now suppose the

identity is true for k, that is,

f(k) = 2 cos
π

2k+1

We want to use this to show that

f(k + 1) = 2 cos
π

2k+2
.
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Note that cos 2x = 2 cos2 x− 1.

f(k + 1) =
√
2 + f(k)

=

√
2 + 2 cos

π

2k+1

=

√
2 + 2(2 cos2

π

2k+2
− 1)

=

√
2 + 4 cos2

π

2k+2
− 2

=

√
4 cos2

π

2k+2

= 2 cos
π

2k+2

Define the sequence

a1 =
√
2, an+1 =

√
2
an

for n ≥ 1.

i.e.
√
2,
√
2

√
2
,
√
2

√
2
√

2

,
√
2

√
2
√

2

√
2

, · · ·

Claim 1. It is an increasing sequence (for every n, an ≤ an+1).

Base case (n = 1): a1 ≤ a2 because
√
2 ≤

√
2
√
2
. Suppose now that ak ≤ ak+1

for a given k. We want to show that this implies that

ak+1 ≤ ak+2.

However,

ak+1 =
√
2
ak

and ak+2 =
√
2
ak+1

We want to show that √
2
ak ≤

√
2
ak+1

Since ak ≤ ak+1 and f(x) =
√
2
x
is an increasing function. We are done.

Claim 2. For any n, an ≤ 2.

We apply induction on n.

Base case (n = 1): a1 =
√
2 ≤ 2.

Suppose ak ≤ 2 for some k. Then ak+1 =
√
2
ak ≤

√
2
2
= 2. By induction,

an ≤ 2 for all n.
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So the sequence (an) converges to some L ≤ 2.
We have

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

√
2
an

=
√
2
limn→∞ an

=
√
2
L
.

1.3 Aug 31

Claim: Every number in the sequence

1007, 10017, 100117, 1001117, . . .

is divisible by 53.

Proof. Base case: 1007 = 53× 19 =⇒ a1 is divisible by 53.

ak+1 = 10(ak − 6) + 7

So if ak is divisible by 53, then ak+1 is also divisible by 53.

1.3.1 Strong Induction

Suppose we have a sequence of statements

S1, S2, S3, . . .

such that

• S1 is true

• For every N , if Sk is true for every k ∈ N , then SN is also true.

Then Sn is true for every n.

Proposition 5. If α is a real number such that

α+
1

α
∈ Z

then for every n ∈ N
αn +

1

αn
∈ Z.

Proof. We use strong induction. For n = 1, we are given that

α+
1

α
∈ Z.

Now consider n+ 1.

αn+1 +
1

αn+1
= (αn +

1

αn
)(α+

1

α
)− (αn−1 +

1

αn−1
)
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Since αn+ 1
αn , α+ 1

α , α
n−1+ 1

αn−1 ∈ Z by assumption, the identity implies that

αn+1 +
1

αn+1
∈ Z.

By strong induction, the conclusion follows.

Proposition 6. For every integer n ≥ 1, 3n+1
∣∣23n + 1.

Proof. For n = 1, we have

9 = 31+1
∣∣231 + 1 = 9.

For n+ 1, we have

23
n+1

+ 1 = (23
n

)3 + 1

= (23
n

+ 1)((23
n

)2 − 23
n

+ 1)

Also note that

(23
n

)2 − 23
n

+ 1 ≡ ((−1)3
n

)2 − (−1)3
n

+ 1

≡ (−1)2 − (−1) + 1

= 3 ≡ 0,

that is, (23
n

)2 − 23
n

+ 1 is always divisible by 3.

If 3n+1
∣∣23n + 1, then the previous imply that

3n+2 = 3n+1 · 3
∣∣23n+1

+ 1.

By induction, the conclusion follows.

Proposition 7. For every k ∈ N,

f(k) :=
k7

7
+
k5

5
+

2k3

3
− k

105
∈ Z.

Proof. We will prove this using induction on k.

First, note that

f(k) =
15k7 + 21k5 + 70k3 − k

105
.

The claim is equivalent to

105

∣∣∣∣15k7 + 21k5 + 70k3 − k =: g(k)

for every k ∈ N.
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Base case: k = 1: g(1) = 15 + 21 + 70− 1 = 105 is divisible by 105.

Suppose 105
∣∣g(k). I claim that then 105

∣∣g(k + 1). It suffices to show that

105
∣∣g(k + 1)− g(k).

However,

g(k + 1)− g(k) = 105k6 + 315k5 + 630k4 + 735k3 + 735k2 + 420k + 105

is divisible by 105 because all coefficients are divisible by 105 and k ∈ N. The
conclusion follows from induction.

1.4 Sep 2

Usual induction.
S1, S2, S3, . . . sequence of statements (a) S1 is true (b) For any given k ∈
N, Sk =⇒ Sk+1 =⇒ all Sn are true.

Strong induction.
S1, S2, S3, . . . sequence of statements (a) S1 is true (b) For any given k ∈
N, (S1, S2, . . . , Sk) =⇒ Sk+1 =⇒ all Sn are true.

Proposition 8. Every natural number can be written in the form

±12 ± 22 ± · · · ± n2.

Proof. Note that

1 = +12

2 = −12 − 22 − 32 + 42

3 = −12 + 22

4 = +12 − 22 − 32 + 42

Now, in order to represent the other natural numbers, we do an induction of
the form ”If k can be represented in that form, so can k + 4” This follows the
identity

4 = m2 − (m+ 1)2 − (m+ 2)2 + (m+ 3)2 for every m

So

4 + k = ±12 ± 22 ± · · · ± n2 + (n+ 1)2 − (n+ 2)2 − (n+ 3)2 + (n+ 4)2.

Proposition 9. For every N ∈ N, N ≥ 2,√
2

√
3

√
· · ·

√
N < 3.
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Proof. Claim: For every m ∈ N,m ≤ N,√
m

√
(m+ 1)

√
· · ·

√
N < m+ 1.

This is a generalization of the problem.

We do backwards induction on m starting from m = N .

Base case: m = N , in which case we have

√
N < N + 1.

Now assume it is true for m = k,m ≤ N , that is,√
k

√
(k + 1)

√
· · ·

√
N < k + 1

We deduce it for m = k − 1 by noting that√√√√
(k − 1)

√
k

√
(k + 1)

√
· · ·

√
N <

√
(k − 1)(k + 1)

=
√
k2 − 1

< k

= (k − 1) + 1

Take m = 2, then we prove this statement.

1.4.1 Dyadic induction

Suppose we have sequence of statements S1, S2, S3, · · · .

Suppose:

(a) S2 is true,

(b) For every k, S2k =⇒ S2k+1 ,

(c) Whenever Sn+1 is true, Sn is true.

Theorem: Arithmetic mean – geometric mean inequality (AMGM)

If x1, . . . , xn ≥ 0 are real numbers, then

x1 + x2 + · · ·+ xn
n

≥ n
√
x1 · · ·xn
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Proof. Base case: For n = 2, this is

x1 + x2
2

≥
√
x1x2

⇐⇒ x1 + x2 ≥ 2
√
x1x2

⇐⇒ x1 − 2
√
x1x2 + x2 ≥ 0

⇐⇒ (
√
x1 −

√
x2)

2 ≥ 0.

Suppose it is true when n = 2k, we show this implies that it is true for n = 2k+1.

Indeed,

x1 + · · ·+ x2k+1

2k+1
=

x1+···+x
2k

2k
+

x
2k+1

+···+x
2k+1

2k

2

≥
2k
√
x1 · · ·x2k + 2k

√
x2k+1 · · ·x2k+1

2

≥
√

2k
√
x1 · · ·x2k 2k

√
x2k+1 · · ·x2k+1

= 2k+1√x1x2 · · ·x2k+1

So we know by induction on the power k in n = 2k that the inequality is true for
powers of 2. It suffices then to show that if the inequality is true for n = m+1,
m ∈ N, then it is true for n = m.

Consider m numbers ≥ 0, x1, . . . , xm.

Extend this to the sequence x1, . . . , xm, m
√
x1 · · ·xm.

We now have m+ 1 elements.

Assuming the truth of the inequality for m+ 1, we have

x1 + · · ·+ xm + m
√
x1, · · · , xm

m+ 1
≥ m+1

√
x1 · · ·xm m

√
x1, · · · , xm

Algebraic manipulation gives

x1 + · · ·+ xm + m
√
x1 · · ·xm ≥ (m+ 1) m

√
x1 · · ·xm

=⇒ x1 + · · ·+ xm ≥ m m
√
x1 · · ·xm

=⇒ x1 + · · ·+ xm
m

≥ m
√
x1 · · ·xm.

We then know that S2k =⇒ S2k+1 and Sm+1 =⇒ Sm.

Therefore, Sn is true for every n ≥ 1.
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1.5 Sep 7, Binomial Coefficient, Newton’s Binomial The-
orem

Comment on problem 2

n∑
k=1

k · 3k =
3

4
((2n− 1) · 3n + 1)

Let’s find a formula for the more general summation.

n∑
k=1

k · xk = x+ 2x2 + · · ·+ nxn

Consider
n∑
k=0

xk = 1 + x+ · · ·+ xn =
xn+1 − 1

x− 1
.

Differentiating both sides w.r.t. to x, we obtain

1 + 2x+ 3x2 + · · ·+ nxn−1 =
(n+ 1)xn

x− 1
− xn+1 − 1

(x− 1)2
.

Multiplying by x, we obtain

n∑
k=1

k · xk = x(
(n+ 1)xn

x− 1
− xn+1 − 1

(x− 1)2
).

1.5.1 Binomial Coefficient

Take 0 ≤ k ≤ n integers, and define(
n

k

)
:= #{k-element subsets of an n-element set}.

e.g. 4 people can form 4×3
2 = 6 pairs. (Division by two because pairs were

counted twice)

Lemma.
(
n
k

)
= n!

k!(n−k)!

Proof. The first element may be chosen in n ways. The second element in n−1.
· · · The kth element in n− k+1. So the number of ’ordered’ k-element subsets
is

n(n− 1) · · · (n− k + 1).
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The ordering should be removed. So far each k-element subset is counted k!.
Therefore,(

n

k

)
=
n(n− 1) · · · (n− k + 1)

k!

=
(n(n− 1) · · · (n− k + 1))((n− k)(n− k − 1) · · · 1)

k!((n− k)(n− k − 1) · · · 1)

=
n!

k!(n− k)!
.

e.g. Suppose there are 100 employees. In how many ways can we create groups
which exactly 4 members?(

100

4

)
=

100!

4! · 96!
=

1000 · 99 · 98 · 97
24

= 3921225.

Lemma. k! always divides the product of any k consecutive integers.

Proof. (
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!

is an integer because it is counting the number of k-element subsets of an n-
element set.

1.5.2 Newton’s Binomial Theorem

Theorem(Newton). Suppose n ∈ N, a, b variables,

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k.

Proof. Note that
(a+ b)n = (a+ b)(a+ b) · · · (a+ b)︸ ︷︷ ︸

n times

.

If I choose k of the brackets and have a coming from it, the other n−k brackets
contribute b.
The number of ways of choosing k of the (a+ b) terms is

(
n
k

)
. So

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k.
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1.5.3 Identities regarding binomial coefficients

1. (
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
= 2n.

Why? Using Newton’s Binomial Theorem,

n∑
k=0

(
n

k

)
=

n∑
k=0

(
n

k

)
1k1n−k = (1 + 1)n = 2n.

We can also consider counting subsets of an n-element set in two ways.
Take n elements and count how many ways there are to put these two
elements into 2 different containers (A and B)

a) Every element can take two states: it’s either in A or in B. This gives
n steps with 2 options at each step, so we get 2n options in total.

b) We can also think of adding up all the ways in which we can have k
elements in A and n − k elements in B, for 0 ≤ k ≤ n. For each k, this
number is: ”choose k elements that will go into A”. Then the other n− k
elements automatically go to B. So for each k this number is just

(
n
k

)
.

Now, we add this for all k previously mentioned to get
∑n
k=0

(
n
k

)
.

And thus, 2n =
∑n
k=0

(
n
k

)
.

2.

0 = ((−1) + 1)n =

n∑
k=0

(
n

k

)
(−1)k1n−k

=

(
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n

(
n

n

)

3. (
n

k

)
=

(
n

n− k

)
for 0 ≤ k ≤ n

Alg. proof.(
n

n− k

)
=

n!

(n− k)!(n− (n− k))!
=

n!

(n− k)!k!
=

(
n

k

)

Combinatorial arg. Whenever you choose a k-element subset of an n-element
set, the complement is an (n− k)-element subset of the n-element set.
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1.6 Sep 9, Binomial Coefficients Continued

More identities regarding binomial coefficients:

1. For 1 ≤ k ≤ n, (
n

k

)
=
n

k

(
n− 1

k − 1

)
.

Proof. Here we use Combinatorial proof. The algebraic one is left for
exercise.

Rewrite the identity in the form

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

Let’s count something in two different ways.

Consider pairs (A, x), where A is a subset of size k (of an n-element set)
and x ∈ A.

We can count the number of such subsets by first selecting A in
(
n
k

)
and

then choosing x ∈ A in k ways. There are k
(
n
k

)
such pairs.

The other way of counting such pairs is selecting x ∈ {1, · · · , n} in n
ways, and then choosing the other k− 1 elements to form a subset of size
k. There are n

(
n−1
k−1

)
ways of doing this.

2. Pascal’s Identity

For 1 ≤ k ≤ n, we have(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Combinatorial argument. Take the set {1, 2, · · · , n} with n elements.
Split the problem in two: Count subsets of size k containing 1 + Count
subsets of size k not containing 1.

# subsets of size k not containing 1 is
(
n−1
k

)
.

# subsets of size k containing 1 is
(
n−1
k−1

)
.

Therefore, (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Problem 1. (Vandermonde’s Identity)
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For 1 ≤ k ≤ m+ n, m,n, k ∈ N(
m+ n

k

)
=

k∑
i=0

(
m

i

)(
n

k − i

)
.

Corollary of this is that when m = k = n, we have(
2n

n

)
=

n∑
i=0

(
n

i

)(
n

n− i

)

=

n∑
i=0

(
n

i

)2

=

(
n

0

)2

+

(
n

1

)2

+ · · ·+
(
n

n

)2

.

Proof. Suppose we want to choose k elements from a set with m+ n elements.
This can be done in

(
m+n
k

)
ways.

I will count this in a different way. Take the set {1, 2, 3, · · · ,m,m+1, · · · ,m+n}.

If i of the elements of the subset are among the first m, then the rest (k − i)
elements have to be among {m+ 1, · · · ,m+ n}. =⇒

(
m
i

)(
n
k−i
)
ways.

Now, i could be {0, 1, · · · , k}. So summing from i = 0 to i = k, we obtain

k∑
i=0

(
m

i

)(
n

k − i

)
.

Sketch of the algorithmic proof.

Proof. Note that
(
m+n
k

)
is the coefficient of xk in

(1 + x)m+n =

m+n∑
i=0

(
m+ n

i

)
xi.

On the other hand,

(1 + x)m+n = (1 + x)m(1 + x)n

= (

m∑
i=0

(
m

i

)
xi)(

n∑
j=0

(
n

j

)
xj)

=

m+n∑
l=0

(
∑
i+j=l

(
m

i

)(
n

j

)
)xl

=

m+n∑
l=0

(
l∑
i=0

(
m

i

)(
n

l − i

)
)xl
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The coefficient of xk is exactly

k∑
i=0

(
m

i

)(
n

k − i

)

Problem 2.
n∑
k=1

k2
(
n

k

)
= ?

Suppose we have n people. If we choose k of them in
(
n
k

)
ways, the King can

be chosen in k ways, and the President also in k ways. There are k2
(
n
k

)
ways of

doing all this.

Since k can be any of 1, 2, · · · , n, we have a total of
∑n
k=1 k

2
(
n
k

)
ways of doing

this.

Let’s count this in a different way.

Case 1: Suppose King = President.

Choose this person in n ways, and then choose a subset of the other n−1 people
in 2n−1 ways.

So when King = President, we have n2n−1 communities.

Case 2: Suppose King ̸= President.

In this situation, we choose the King in n ways, and the President in n−1 ways.
Then we choose the citizens in 2n−2 ways. All this can be done in n(n− 1)2n−2

ways.

Sum two cases up,

n∑
k=1

k2
(
n

k

)
= n2n−1 + n(n− 1)2n−2.

1.7 Sep 12

Last class, we had the following problem

n∑
k=1

k2
(
n

k

)
= n2n−1 + n(n− 1)2n−2

Sketch of alg. proof:
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Proof. The idea is similar to the calculus computation of

n∑
k=1

kxk

Consider
n∑
k=0

(
n

k

)
xk

BT
= (1 + x)n

Differentiating once, we obtain

n∑
k=0

k

(
n

k

)
xk−1 = n(1 + x)n−1

Multiply by x to get
n∑
k=0

k

(
n

k

)
xk = nx(1 + x)n−1

Differentiating again, we get

n∑
k=0

k2
(
n

k

)
xk−1 = n((1 + x)n−1 + (n− 1)x(1 + x)n−2)

Set x = 1 to get the result

n∑
k=1

k2
(
n

k

)
= n2n−1 + n(n− 1)2n−2.

Problem Show that
n∑
k=0

(
n+ k

k

)
1

2k
= 2n.

Which is equivalent to show

n∑
k=0

(
n+ k

k

)
1

2n+k
= 1.

Solution We induct on n ≥ 0. If n = 0, then

0∑
k=0

(
0 + k

k

)
1

2k
=

(
0

0

)
=

0!

0!0!
= 1.

and 20 = 1.
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Suppose it is true for n. We show it for n+ 1. Let

f(n) :=

n∑
k=0

(
n+ k

k

)
1

2k

Then

f(n+ 1) =

n+1∑
k=0

(
n+ 1 + k

k

)
1

2k

(Pascal’s Identity) = 1 +

n+1∑
k=1

((
n+ k

k

)
+

(
n+ k

k − 1

))
1

2k

= 1 +

n+1∑
k=1

(
n+ k

k

)
1

2k
+

n+1∑
k=1

(
n+ k

k − 1

)
1

2k

= 1 +

n∑
k=1

(
n+ k

k

)
1

2k
+

(
2n+ 1

n+ 1

)
1

2n+1
+

n+1∑
k=1

(
n+ k

k − 1

)
1

2k

= f(n) +

(
2n+ 1

n+ 1

)
1

2n+1
+

n+1∑
k=1

(
n+ k

k − 1

)
1

2k

Do a change of variables. Let i = k − 1.

= f(n) +

(
2n+ 1

n+ 1

)
1

2n+1
+

n∑
i=0

(
n+ 1 + i

i

)
1

2i+1

= f(n) +
1

2

n+1∑
i=0

(
n+ 1 + i

i

)
1

2i

= f(n) +
1

2
f(n+ 1)

We have shown that

f(n+ 1) = f(n) +
1

2
f(n+ 1)

=⇒ f(n+ 1) = 2f(n)

By assumption, f(n) = 2n.

=⇒ f(n+ 1) = 2n+1.
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2 Number Theory

2.1 Sep 12 Continued, Division Algorithm

2.1.1 Division Algorithm

Theorem Suppose a, b ∈ Z, b > 0. Then there are unique integers q and r such
that

a = bq + r, 0 ≤ r < b

e.g. Suppose b = 4. Then this is saying that given a ∈ Z, it can be uniquely
written as

a = 4q + r, where r ∈ {0, 1, 2, 3}

Proof. We use the well ordering principle. Consider the set

S := {a− bx|a− bx ≥ 0, x ∈ Z}.

S ̸= ∅ because if x = −|a|, we obtain

a− b(−|a|) = a+ b|a|
b>0
≥ a+ |a| ≥ 0

By the WOP, there is a q ∈ Z and r ∈ Z s.t.

r = a− bq ≥ 0

and r is minimal.

Claim. 0 ≤ r < b.

Every element in S is ≥ 0 and

r ∈ S =⇒ r ≥ 0.

Assume to the contrary that r ≥ b. Take x = q + 1

=⇒ a− b(q + 1) = (a− bq)− b = r − b ≥ 0

This means that we have found q, r ∈ Z,

0 ≤ r < b

s.t.
a = bq + r.

However, this would imply that 0 ≤ r− b ∈ S. But r− b < r, contradicting the
minimality of r in S.

In order to show uniqueness, it suffices to show that q1 = q and r1 = r. Consider

(1) a = bq + r

(2) a = bq1 + r1
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(1)− (2):

0 = b(q − q1) + (r − r1)

=⇒ r1 − r = b(q − q1)

=⇒ |r1 − r| = b|q − q1| (3)

0 ≤ r1, r < b =⇒ |r1 − r| < b

(3)
=⇒ b|q − q1| < b

=⇒ 0 ≤ |q − q1| < 1

However, q, q1 ∈ Z =⇒ |q − q1| ∈ Z.

Therefore, |q − q1| = 0 =⇒ q1 = q.

This also implies, by (3), that

|r − r1| = b|q − q1| = 0

=⇒ r1 = r.

Therefore, q and r are unique.

2.2 Sep 14, Division Algorithm continued

Theorem 1. Suppose a, b ∈ Z, b > 0, then there are unique q, r ∈ Z s.t.

a = bq + r, 0 ≤ r < b

Applications of the division algorithm

Problem. What are the possible remainder when a perfect square is divided
by 3?

Solution. Suppose our perfect square is n2, n ∈ N. By the division algorithm,
n = 3k, 3k + 1 or 3k + 2 for some k ∈ Z.

Case 1: n = 3k.

Then
n2 = 9k2 divisible by 3 =⇒ remainder = 0.

Case 2: n = 3k + 1.

Then

n2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1

=⇒ remainder = 1.
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Case 3: n = 3k + 2 Then

n2 = 9k2 + 12k + 4

= 3(3k2 + 4k + 1) + 1

=⇒ remainder = 1.

Answer. Only 0 and 1 are possible remainder.

Problem. What are the possible remainders when a perfect square is divided
by 4?

Solution. 02 = 0, 11 = 1, 22 = 4 remainder 0, 32 = 9 remainder 1.

Suppose n2, n ∈ N, is our perfect square.

By the division algorithm, n = 2k or n = 2k + 1, k ∈ Z.

Case 1: n = 2k (n is even).

Then n2 = 4k is divisible by 4.

Case 2: n = 2k + 1 (n is odd).

Then

n2 = 4k2 + 4k + 1

= 4k(k + 1) + 1 remainder is 1.

Problem. When an odd perfect square is divided by 8, the remainder is always
1.

Problem. Show that no number in the (infinite) sequence

11, 111, 1111, 11111, · · ·

is a perfect square.

Solution. All numbers in the sequence have a remainder of 3 when divided by
4. However, the possible remainder of a perfect square divided by 4 are only 0
and 1.

Theorem 2. (Fermat) If p is an odd prime, then it can be written as a sum of
two perfect squares if and only if it has remainder 1 when divided by 4.

Full proof will come much later.

Claim. If we have an odd number that is a sum of two perfect squares, then it
must have a remainder of 1 when divided by 4.
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Proof. Suppose n ∈ Z is odd and n2 = a2 + b2 for some a, b ∈ Z.

a2 and b2 are perfect squares, and so their only possible remainders when divided
by 4 are 0 or 1 =⇒ only possible remainders of n when divided by 4 are
0 + 0, 0 + 1, 1 + 0, and 1 + 1. Since n is odd, 0 and 2 are not possible.

2.2.1 Divisibility

Def. Suppose a, b ∈ Z. We say that a divides b, and write a | b, if there is an
integer c such that b = ac.

Examples.

1 | n, n = 1 · n
n | n, n = n · 1
3 | 6
10 | 20
3 ∤ 2
3 ∤ 5

Def. (Greatest common divisor, gcd).

Suppose a, b ∈ Z. Then a positive integer gcd(a, b) = d is called the greatest
common divisor (gcd) of a and b if

1. d | a and d | b.

2. c ∈ N s.t. c | a and c | b =⇒ c ≤ d.

Examples.

a) gcd(4, 6) = 2. (4 has divisors 1, 2, 4; 6 has divisors 1, 2, 3, 6)

b) gcd(−5, 5) = 5. (Both of them have divisors 1, 5)

Problem.
gcd(2016! + 1, 2017! + 1) =?

We will use the following fact:

(d | a, d | b) ⇐⇒ (d | a, d | b− ka)k ∈ Z.

Solution.

gcd(2016! + 1, 2017! + 1)

=gcd(2016! + 1, (2017! + 1)− 2017(2016! + 1))

= gcd(2016! + 1, (2017! + 1)− 2017!− 2017)

= gcd(2016! + 1,−2016)

= gcd((2016! + 1)− 2015!2016,−2016)

= gcd(1,−2016)

=1.
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Exercise. If Fn are the Fibonacci numbers, n ∈ N, then

gcd(Fn, Fn+1) = 1.

And to be more generalized,

gcd(Fm, Fn) = Fgcd(m,n)

2.3 Sep 16, Divisibility continued

Suppose k, a, b ∈ Z. Then for d ∈ N,

(d | a, d | b) ⇐⇒ (d | a, d | b− ka)

=⇒ {d ∈ N : d | a, d | b} = {d ∈ N : d | a, d | b− ka}
=⇒ max{d ∈ N : d | a, d | b} = max{d ∈ N : d | a, d | b− ka}
=⇒ gcd(a, b) = gcd(a, b− ka).

Recall that the Fibonacci sequence is recursively defined as

F0 = 1, F1 = 1, and

Fn+1 = Fn + Fn−1 for n ≥ 1

Problem. Show that for every n,

gcd(Fn, Fn + 1) = 1

Proof. We use induction on n.

For n = 0, we have
gcd(F0, F1) = gcd(1, 1) = 1

Assume the statement is true for n = k. We show that this implies the validity
for n = k + 1.

gcd(Fk+1, Fk+2)

= gcd(Fk+1, Fk+2 + Fk)

= gcd(Fk+1, Fk+2 + Fk − Fk+1)

= gcd(Fk+1, Fk)

By the inductive assumption, this latter quantity is 1.

The conclusion follows from induction.
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2.3.1 Basic properties of divisibility

Theorem 3.

(a) n | n, 1 | n, n | 0

(b) a | b, b | c =⇒ a | c

(c) a | b, b | a =⇒ a = ±b

(d) a | b, b ̸= 0 =⇒ |a| ≤ |b|

(e) d | a, d | b =⇒ ∀x, y ∈ Z, d | ax+ by

Proof. Proof of all the properties.

(a) Clear.

(b) a | b =⇒ there is r ∈ Z s.t. b = ar.

b | c =⇒ there is s ∈ Z s.t. c = sb.

=⇒ c = sb = s(ar) = (rs)a

=⇒ a | c.

(c) If one of a, b is 0, the other must also be 0

0 | 0 ⇐⇒ there is n ∈ Z s.t. 0 = n · 0

Otherwise,

a | b =⇒ b = ra for some r ∈ Z
b | a =⇒ a = sb for some s ∈ Z

=⇒ a = rsa

a̸=0
=⇒ rs = 1

=⇒ r = ±1.

Then the conclusion is clear.

(d)
a | b, b ̸= 0

24



There is r ∈ Z s.t.

b = ra

=⇒ |b| = |r||a|
b ̸=0 =⇒ r ̸=0

=⇒ |b| = |r||a| ≥ |a|.

(e) If d | a, then
a = dr, r ∈ Z

If d | b, then
b = ds, s ∈ Z

If x, y ∈ Z, then

ax+ by = drx+ dsy

= d(rx+ sy)

=⇒ d | ax+ by.

2.3.2 Main Theorem about gcd: Bézout’s Theorem

Theorem 4. Suppose a, b ∈ Z, at least one of which is nonzero. Then there
are integers m,n ∈ Z s.t.

gcd(a, b) = am+ bn.

e.g.
1 = gcd(5, 2) = 5(1) + 2(−2)

Proof. We use the well-ordering principle. Consider the set

S := {ax+ by : x, y ∈ Z, ax+ by > 0}.

Assume without loss of generality that a ̸= 0.

If a > 0, then a = a · 1 + b · 0 ∈ S.

If a < 0, then |a| = a · (−1) + b · 0 ∈ S

Therefore, S ̸= ∅.

By the well-ordering principle, S has a minimal element d > 0.

The claim is that d = gcd(a, b).

We first show that d | a, d | b.

Let’s show that d | a.
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By the division algorithm,

a = dq + r, for some q, r ∈ Z, 0 ≤ r < d.

Since d ∈ S, there are x, y ∈ Z s.t.

d = ax+ by.

Then,

r = a− dq

= a− (ax+ by)q

= a− axq − byq

= a(1− xq)− byq ∈ Z.

So r is a linear combination of a and b.

If r > 0, then r would contradict the minimality of d.

This contradiction implies that

r = 0 =⇒ d | a

The exact same argument gives d | b.

Now we show that d is the greatest common divisor of a, b.

If

c | a, c | b =⇒ c | ax+ by = d

d̸=0
=⇒ |c| ≤ |d| = d.

So d = gcd(a, b).

2.4 Sep 19, Divisibility and gcds

Corollary 4.1. Suppose a, b ∈ Z, at least one of which is nonzero. Then

gcd(a, b)Z = {ax+ by : x, y ∈ Z}

Proof. If we consider ax+ by, x, y ∈ Z, then since

gcd(a, b) | a, b, gcd(a, b) | ax+ by

=⇒ ax+ by ∈ gcd(a, b)Z
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Conversely, if we have a multiple

n gcd(a, b), n ∈ Z

Since gcd(a, b) = ax+ by for some x, y ∈ Z,

n gcd(a, b) = anx+ bny

This concludes the proof.

Corollary 4.2. Suppose a, b ∈ Z as before. Then gcd(a, b) = 1 if and only if
there are integers x, y ∈ Z s.t.

1 = ax+ by.

Proof. If gcd(a, b) = 1, then by the main theorem on gcds, there are x, y ∈ Z
s.t.

1 = gcd(a, b) = ax+ by.

If ax+ by = 1, then since gcd(a, b) | a, b,

gcd(a, b) | ax+ by = 1

=⇒ gcd(a, b) = 1

Proposition 10. Suppose a | bc and gcd(a, b) = 1, then a | c.

Proof. Since gcd(a, b) = 1, there are integers x, y ∈ Z s.t.

ax+ by = 1. (∗)

. Multiply both sides of (∗) by c to get

acx+ bcy = c

Note that a | ac and we are give that a | bc. Therefore,

a | (ac)x+ (bc)y = c

Proposition 11. Suppose a, b ∈ Z with gcd(a, b) = 1. If a | c, b | c, then

ab | c.
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Proof. Since gcd(a, b) = 1,we know (by the main theorem of gcds) that there
are x, y ∈ Z s.t.

ax+ by = 1.

Multiply by c to get
acx+ bcy = c

Since b | c, ab | ac. ( cb ∈ Z =⇒ ac
ab = c

b ∈ Z) By the same argument,
a | c =⇒ ab | bc. We conclude that ab | acx+ bcy = c.

Problem. Show that
21x2 − 7y2 = 9

has no integer solutions.

Proof. Since 3 | 9 and 3 | 21x2, 3 | 7y2.

Since gcd(3, 7) = 1,
3 | y2 = y · y =⇒ 3 | y

y = 3y1 for some y1 ∈ Z

Therefore,

21x2 − 7(3y1)
2 = 9

⇐⇒ 21x2 − 7 · 3 · 3y21 = 9

divide by 3⇐⇒ 7x2 − 21y21 = 3

Since 3 | 3 and 3 | 21y21 , we must have 3 | 7x2. Again, this implies that
3 | x =⇒ x = 3x1, for some x1 ∈ Z.

7(3x1)
2 − 21y21 = 3

⇐⇒ 21x21 − 7y21 = 1

⇐⇒ 21x21 − 6y21 − y21 = 1

⇐⇒ (21x21 − 6y21 − 3)︸ ︷︷ ︸
divisible by 3

+2 = y21

This implies that y21 has remainder 2 when divided by 3. However, no such
perfect square exists.

Problem. Show that
x2 + y2 + z2 = 2xyz

has no integer solutions except for x = y = z = 0.

Solution Sketch. Let k ≥ 0 be the largest power of 2 s.t. 2k | x, y, z.
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Write
x = 2kx1, y = 2ky1, z = 2kz1.

Then
x2 + y2 + z2 = 2k+1x1y1z1.

You can conclude that exactly one of x1, y1, z1 is even, say x1.

But then
y21 + z21 = 2k+1x1y1z1 − x21.

Since 2 | x1, right hand side is divisible by 4, thus

4 | y21 + z21 .

On the other hand, y1, z1 are odd =⇒ y21 + z21 has remainder 2 when divided
by 4.

4 ∤ y21 + z21 .

Contradiction!

Note: If x ∈ Z, then the only possible remainders of x2 when divided by 3 or
4 are 0 and 1.

2.4.1 Gcd’s and Congruences

Definition: We say that a, b ∈ Z are congruent modulo (or mod) n ∈ N, and
write a ≡ b (mod n), if n | a− b

Example:

−1 ≡ 2 (mod 3)

7 ≡ 3 (mod 4)

3 ≡ 1 (mod 2)

11 ≡ 2 (mod 9)

If a is odd, then a2 ≡ 1 (mod 8).

If a ∈ Z, then a2 ≡ 0 or 1 (mod 8).

If a ∈ Z, then a2 ≡ 1 (mod 3).

Theorem 5.

a ≡ b (mod n)
c ≡ d (mod n)

}
=⇒ a+ c ≡ b+ d (mod n) (i)

a ≡ b (mod n)
c ≡ d (mod n)

}
=⇒ ac ≡ bd (mod n) (ii)
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Proof. Since a ≡ b (mod n), n | a− b =⇒ there exists r ∈ Z s.t.

a− b = nr

=⇒ a = b+ nr

Similarly, there is s ∈ Z s.t. c = d+ ns

Therefore,

a+ c =(b+ nr) + (d+ ns)

=(b+ d) + n(r + s)

=⇒ n | (a+ c)− (b+ d)

⇐⇒ a+ c ≡ b+ d (mod n)

This completes the proof of (i).

Proof. Proof of (ii) is shown as follows.

ac = (b+ nr)(d+ ns)

= bd+ nbs+ ndr + n2rs

= bd+ n(bs+ dr + nrs)

=⇒ n | ac− bd

⇐⇒ ac ≡ bd (mod n).

Corollary 5.1. Suppose P ∈ Z[X](= {a0,+a1x + · · · + akx
k | k ≥ 0, k ∈ Z})

= polynomials with Z coefficient

Then a ≡ b (mod n) =⇒ P (a) ≡ P (b) (mod n).

Proof. Suppose

P (x) = a0 + a1x+ · · ·+ akx
k, withai ∈ Z.

Then, a ≡ b (mod n) =⇒ aj ≡ bj (mod n) for any j ≥ 0
=⇒ ∀j ≥ 0, aja

j ≡ ajb
j (mod n)

=⇒ sum them up, P (a) ≡ P (b) (mod n)

Proposition 12. If a ∈ Z, then

a2 ≡ 0 or 1 (mod 3).

30



Proof. By the division algorithm,

a ≡ 0, 1, or 2 (mod 3).

Therefore,

a2 = 02, 12, 22 (mod 3)

= 0, 1 (mod 3)

Proposition 13. If a ∈ Z, then

a2 ≡ 0 or 1 (mod 4).

Proof. By the division algorithm,

a ≡ 0, 1, 2, or 3 (mod 4).

Therefore,

a2 = 02, 12, 22, 32 (mod 4)

= 0, 1 (mod 4)

Proposition 14. If a ∈ Z is odd, then a2 = 1 (mod 8).

Proof. Since a ∈ Z is odd, the division algorithm implies that

a ≡ 1, 3, 5, 7 (mod 8)

Then,

a2 ≡ 12, 32, 52, 72 (mod 8)

≡ 1 (mod 8)

Problem: What are all pairs of prime numbers (p, q) s.t.

p =
a3 + a

2
, q =

a3 − a

2

for some a ∈ Z?
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Solution: It is easy to see that this is equivalent to finding pairs of prime
numbers (p, q) s.t. (p− q)3 = p+ q.

p+ q = (p− q)3

≡ 0 (mod p− q)

also p+ q = (p− q) + 2q

≡ 2q (mod p− q)

Thus,
p− q | 2q.

We also have

(p− q)3 = p+ q ≡ 0 (mod p+ q)

= ((p+ q)− 2q)3

≡ (0− 2q)3 (mod p+ q)

≡ −8q3 (mod p+ q)

p ̸= q, and p, q primes =⇒ gcd(p, q) = 1.

Then,

gcd(p− q, q) = gcd((p− q) + q, q)

= gcd(p, q)

= 1.

Using (a | bc, gcd(a, b) = 1 =⇒ a | c), we obtain from p− q | 2q that p− q | 2.
By a similar argument,

gcd(p+ q, q) = 1

=⇒ gcd(p+ q, q3) = 1.

Combining with p+ q | 8q3, we obtain p+ q | 8.

From p− q | 2 and p+ q | 8, we obtain that (p, q) = (5, 3).

Proposition 15. gcd(a, b) = d =⇒ gcd(ad ,
b
d ) = 1

Proof. There are integers x, y ∈ Z s.t.

ax+ by = d

=⇒ a

d
x+

b

d
y = 1

=⇒ gcd(
a

d
,
b

d
) = 1
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Definition. Suppose a1, · · · an ∈ Z, at least one of which is nonzero.

Then gcd(a1, · · · , an) = d is defined as the positive integer satisfying:

(i) d | a1, d | a2, · · · , d | an
(ii) c | a1, c | a2, · · · , c | an =⇒ c ≤ d.

Problem.
gcd(2022 + 2, 20222 + 2, 20223 + 2, · · · ) =?

Solution. We will use the following lemma.

Lemma. If c | a, b =⇒ c | gcd(a, b)

Proof. By Bézout’s theorem, there are x, y ∈ Z such that

ax+ by = gcd(a, b) =⇒ c | ax+ by = gcd(a, b).

The answer is

gcd(2022 + 2, 20222 + 2, 20223 + 2, · · · ) = gcd(2002 + 2, 20022 + 2) = 6.

2.5 Sep 26, Gcds continued, lcm

2.5.1 Gcds of more than two variables

Def. Suppose a1, · · · , an are integers, at least one of which is nonzero. Then
the gcd of a1, · · · , an, written gcd(a1, · · · , an) is the largest natural number d,
s.t.

1. d | a1, · · · , an.

2. if c | a1, · · · , c | an, then c ≤ d.

Problem.
gcd(2022 + 2, 20222 + 2, 20223 + 2, · · · ) =?

Solution. Let d = gcd(2022 + 2, 20222 + 2, 20223 + 2, · · · ). Then

d | 2002 + 2, 20022 + 2 =⇒ d | gcd(2002 + 2, 20022 + 2)

Note that

20022 + 2 = 2002(2000 + 2) + 2

= 2000(2002 + 2) + 6

=⇒ gcd(2002 + 2, 20022 + 2)

= gcd(2002 + 2, 6)
(
for k ∈ Z, gcd(a, b) = gcd(a, b− ka)

)
= gcd(2004, 6)

= 6
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Therefore d | 6. If we show that

6 | 2002k + 2 for every k ≥ 1

then we would be done.

The claim is that 3 | 2002k + 2.

2002k + 2 ≡ 1k + 2

= 3

≡ 0 (mod 3).

We also know that

2002k + 2 ≡ 0k + 0

= 0 (mod 2).

We conclude that 6 | 2002k + 2 for every k ≥ 1.

The answer is

gcd(2022 + 2, 20222 + 2, 20223 + 2, · · · ) = 6.

Proposition 16. A natural number is divisible by 3 (or 9) if and only if its
sum of digits is divisible by 3 (or 9).

Proof. Suppose n is a natural number with decimal expression

n = (a0 · · · ad)10
= a0 + a1 · 10 + a2 · 102 + · · ·+ ad · 10d, where 0 ≤ a0, · · · , ad ≤ 9

≡ a0 + a1 · 1 + a2 · 12 + · · · ad · 1d (mod 9)

= a0 + a1 + a2 + · · ·+ ad (mod 9).

2.5.2 Least Common Multiple (lcm)

Def. Suppose a, b ∈ Z. Then the least common multiple of a and b, written
lcm(a, b), is a positive integer d s.t.

1. a | d and b | d

2. if a | c and b | c (c ̸= 0), the c ≥ d

Example. lcm(2, 3) = 6, lcm(4, 6) = 12

Theorem 6.
gcd(a, b) · lcm(a, b) = ab.

i.e.

lcm(a, b) =
ab

gcd(a, b)
.
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Example. gcd(a, b) = 1 =⇒ lcm(a, b) = ab.

lcm(4, 6) =
4 · 6

gcd(4, 6)
=

4 · 6
2

= 12.

2.6 Sep 28, lcm and gcd, Euclidean algorithm

2.6.1 lcm and gcd

Theorem 7. For any a, b ∈ N,

lcm(a, b) =
ab

gcd(a, b)

Proof. Let d = gcd(a, b), and let

m =
ab

d

Note that

m = a(
b

d
)

and d | b. Therefore, a | m.

Similarly, b | m.

Therefore, m is a common multiple of both a and b.

We now show that m is the least common multiple.

Suppose c is a nonzero common multiple of a and b.

Consider

c

m
=

c

(abd )

=
cd

ab
.

By Bézout’s theorem, there are integers x, y s.t.

d = ax+ by.

(Note: Bézout’s theorem was an existence result, not a constructive one.)

Consequently,

c

m
=
c(ax+ by)

ab

=
c

b
x+

c

a
y
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c is a common multiple of a and b, i.e. a, b | c =⇒ c
bx+ c

ayZ

We conclude that m | c c̸=0
=⇒ m ≤ c. Therefore,

m = lcm(a, b).

The conclusion follows.

Corollary 7.1. Suppose a, b ∈ N. Then

gcd(a, b) = 1 ⇐⇒ lcm(a, b) = ab

Example.
lcm(4, 5) = 4 · 5 = 20

lcm(6, 4) =
4 · 6

gcd(4, 6)
=

4 · 6
2

= 12.

2.6.2 Euclidean algorithm

The basis of the Euclidean algorithm is the division algorithm.

Division algorithm. Suppose a, b ∈ N. Then there are unique integers q and
r s.t.

a = bq + r

and
0 ≤ r < b.

Example. If b = 4, then any a ∈ N is uniquely written as

a = 4q + r, 0 ≤ r < 4

Suppose a, b ∈ N. Then if

a = bq1 + r1, 0 ≤ r1 < b,

then

gcd(a, b) = gcd(bq1 + r1, b)

= gcd((bq1 + r1)− bq1, b)

= gcd(b, r1)

Now repeating the process, as follows:

b = q1r1 + r2, 0 ≤ r2 < r1

r1 = q2r2 + r3, 0 ≤ r3 < r2

...

rn−1 = qnrn + rn+1, 0 ≤ rn+1 < rn

rn = qn+1rn+1 + 0.
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Therefore,

gcd(a, b) = gcd(b, r1)

= gcd(r1, r2)

...

= gcd(rn+1, 0)

= rn+1

Note that for any n ∈ N,
gcd(n, 0) = n.

Example. gcd(20, 15) =?

Using the Euclidean algorithm, we write

20 = 1 · 15 + 5

15 = 3 · 5 + 0

Thus,
gcd(20, 15) = 5.

Example. (from textbook)

gcd(12378, 3054) =?

12378 = 4 · 3054 + 162

3054 = 18 · 162 + 138

162 = 1 · 138 + 24

138 = 5 · 24 + 18

24 = 1 · 18 + 6

18 = 3 · 6 + 0

Therefore,
gcd(12378, 3054) = 6.

If we want to find x, y, s.t.

12378x+ 3054y = 6.
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We do the following process:

6 = 24− 1 · 18
= 24− 1 · (138− 5 · 24)
= 6 · 24− 1 · 138
= 6 · (162− 1 · 138)− 1 · 138
= 6 · 162− 7 · 138
= 6 · 162− 7 · (3054− 18 · 162)
= (6 + 7 · 18)− 7 · 3054
= 132 · 162− 7 · 3054
= 132 · (12378− 4 · 3054)− 7 · 3054
= 132 · 12378− (132 · 4 + 7) · 3054
= 132 · 12378− 535 · 3054

Therefore, we an take
(x, y) = (132,−535)

to get
12378x+ 2054y = 6

Since gcd = 6, we obtain

lcm(12378, 3054) =
12378 · 3054

6
.

We have lcm(6, 4) = 12, but lcm(6− 4, 4) = lcm(2, 4) = 4 ̸= 12.

For gcd,
d | a, b =⇒ d | a+ kb, b.

For lcm,
a | m, b | m ≠⇒ a+ kb | m.

Problem. Suppose gcd(a, b) = 1. Then

gcd(a, b3) = 1

Solution. By Bézout’s theorem,

1 = ax+ by for some x, y ∈ Z.
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1 = 13 = (ax+ by)3

NBT
= a3x3 + 3a2x2by + 3axb2y2 + b3y3

= a(a2x3 + 3ax2by + 3xb2y2) + b3y3

=⇒ gcd(a, b3) = 1

Problem. If gcd(a, b) = 1, then gcd(a2 + b2, b3) = 1.

Solution. By the previous problem, it suffices to show that gcd(a2+ b2, b) = 1.
However, gcd(a2 + b2, b) = gcd((a2 + b2)− b · b, b)

A second application of the previous problem gives

gcd(a2, b) = 1 since gcd(a, b) = 1

2.7 Sep 30

2.7.1 General Solutions

How do we find integer solutions to

gcd(a, b) = ax+ by

The Euclidean algorithm gave only one solution

ax+ by = gcd(a, b)

is a line with rational slope. Since we also have at least one solution, we expect
infinitely many integer solutions.

How do we find all solutions?

Theorem 8. Suppose a and b are as before and c ∈ Z. Then ax + by = c has
an integer solution ⇐⇒ d = gcd(a, b) | c. If (x0, y0) ∈ Z × Z is a solution,
then all solutions of ax+ by = c are given by

x = x0 − ( bd )t
y = y0 + (ad )t

, t ∈ Z

Example. Last class, we computed

gcd(12378, 3054)

and found
(x0, y0) = (132,−535)

as a solution to
12378x+ 3054y = 6
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By this theorem, all solutions are

x = 132− 3054

6
t

y = −535 +
12378

6
t

Proof. If ax+by = c has an integer solution, then d | a, d | b =⇒ d | ax+by = c.
On the other hand, suppose d | c. Then c = dk for some k ∈ Z.

By Bézout’s theorem, there are integers x′, y′ s.t.

ax′ + by′ = d.

Multiplying both sides by k, we obtain

a(kx′) + b(ky′) = dk = c

Suppose (x, y) ∈ Z× Z is a solution. Then

ax+ by = c (1)

We also have
ax0 + by0 = c (2)

(1)− (2) given

a(x− x0) + b(y − y0) = c− c = 0

=⇒ a(x− x0) = b(y0 − y)

Divided by d to obtain

(
a

d
)(x− x0) = (

b

d
)(y0 − y) (3)

gcd(a, b) = d =⇒ gcd(
a

d
,
b

d
) = 1.

From (3), we have
a

d

∣∣∣ ( b
d
)(y0 − y)

(In general, if s | uv, gcd(s, u) = 1 =⇒ s | v)

Therefore,
a

d
= y0 − y

=⇒ there is an integer t1, s.t.

y0 − y = −a
d
t1

=⇒ y = y0 +
a

d
t1
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Similarly, there is an integer t2, s.t.

b

d

∣∣∣ x− x0

=⇒ x− x0 = − b

d
t2

=⇒ x = x0 −
b

d
t2

We know that 
y0 − y = −a

d t1

x− x0 = b
d t2

(ad )(x− x0) = ( bd )(y0 − y)

From this, we obtain that t1 = t2. So all solutions are of the stated form.

Note furthermore that if

x = x0 −
b

d
t

y = y0 +
a

d
t,

then

ax+ by = a(x0 −
b

d
t) + b(y0 +

a

d
t)

= ax0 + by0 −
ab

d
t+

ab

d
t

= c

2.7.2 Unique Factorization.

Def. A natural number p ≥ 2 is said to be prime if its only divisors are 1 and
p.

e.g. 5, 7, 11, 13, 17, 19

Def. If n ≥ 2 is an integer, it is called composite if there are integers a, b ≥ 2
s.t.

n = a · b.

e.g. 6 = 2 · 3, 10 = 2 · 5, 12 = 22 · 3

Theorem 9. (Unique prime factorization) Every integer n ≥ 2 is a product of
prime numbers

n = pα1
1 · · · pαk

k , (p1, · · · , pk primes)

and this decomposition is unique up to rearranging the prime numbers.
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Proof. We prove existence using strong induction on n ≥ 2. Clearly, n = 2 is a
prime number and so this settles the base case. Now suppose the existence part
if valid for every 2 ≤ n ≤ k.

Consider n = k + 1.

We are done if k + 1 is a prime. Otherwise, k + 1 = a · b for some a, b ≥ 2.

=⇒ a =
k + 1

b
≤ k + 1

2
≤ k

b ≤ k.

By the inductive assumption, both a and b have a prime decomposition, and so
does k + 1 = a · b. Existence follows from strong induction.

For uniqueness, suppose

n = pα1
1 · · · pαk

k , αi ≥ 0

= pβ1

1 · · · pβk

k , βi ≥ 0

Suppose α1 ≥ 1, and so

pα1
1

∣∣∣ n = pα1
1 · · · pαk

k = pβ1

1 · · · pβk

k .

(Recall that if a | bc and gcd(a, b) = 1 =⇒ a | c.)

We know that gcd(pα1
1 , p2) = gcd(pα1

1 , p3) = · · · = gcd(pα1
1 , pk) = 1

Therefore, we obtain that

pα1
1

∣∣∣ pβ1

1 p
max{β2−1,0}
2 · · · pmax{βk−1,0}

k .

Repeating the process, we many eliminate all p2, · · · , pk. Consequently,

pα1
1

∣∣∣ pβ1

1

=⇒ α1 ≤ β1.

Similarly, β1 ≤ α1.

Therefore, α1 = β1. We can similarly show that α2 = β2, · · · , αk = βk.

This concludes the proof of uniqueness.

How is gcd related to prime factorization?
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Theorem 10. Suppose

a = pα1
1 · · · pαk

k , (αi ≥ 0)

b = pβ1

1 · · · pβk

k , (βi ≥ 0)

Then
gcd(a, b) = p

min{α1,β1}
1 · · · pmin{αk,βk}

k

Proof sketch. Suppose d | a, b.

Then
d = pγ11 · · · pγkk

∣∣∣ pα1
1 · · · pαk

k , pβ1

1 · · · pβk

k

=⇒ For every i, γi ≤ min{αi, βi}.

Therefore,

gcd(a, b) = p
min{α1,β1}
1 · · · pmin{αk,βk}

k .

Example.

gcd(12, 15) = gcd(22 · 3, 3 · 5) = 2min{0,2} · 3min{1,1} · 5min{0,1} = 3

Problem.

lcm(a, b, c)2
∣∣ lcm(a, b) · lcm(b, c) · lcm(c, a) for any a, b, c ∈ N.

2.8 Oct 3, p-adic valuations

2.8.1 More on gcd, lcm, and unique prime factorization

Basic observation: If d | n, then n = dr for some r ∈ Z.

By unique prime factorization, any prime appearing in d must also appear in n.

Furthermore, the largest power of any such prime must be at most the power
of this prime appearing in n.

Now suppose that d | a and d | b, d, a, b ∈ N.

Then writing

a = pα1
1 · · · pαk

k

b = pβ1

1 · · · pβk

k

, pi distinct prime numbers, αi, βi ≥ 0

then
d = pγ11 · · · pγkk

where γi ≤ αi, βi.

Thus for every i,
γi ≤ min{αi, βi}.
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From this, we obtain that

gcd(a, b) = p
min{α1,β1}
1 · · · pmin{αk,βk}

k

By the exact same argument, if

a1 = p
α1,1

1 · · · pα1,k

k
...

an = p
αn,1

1 · · · pαn,k

k

, αi,j ≥ 0, then

gcd(a1, · · · , an) = p
min{α1,1,α2,1,··· ,αn,1}
1 · · · pmin{α1,k,α2,k,··· ,αn,k}

k

Warning. gcd(a, b, c) = 1 ≠⇒ gcd(a, b) = 1 Example. gcd(2·3, 3·5, 5·2) = 1.
but gcd(2 · 3, 3 · 5) = 3 ̸= 1.

From lcm, note the following.

If a | m and b | m, where

a = pα1
1 · · · pαk

k

b = pβ1

1 · · · pβk

k

m = pγ11 · · · pγkk ,

then αi, βi ≤ γi, i.e. max{αi, βi} ≤ γi for every i.

From this, we obtain that

lcm(a, b) = p
max{α1,β1}
1 · · · pmax{αk,βk}

k .

Example.

lcm(12, 15) = lcm(22 · 3, 3 · 5)
= 2max{2,0} · 3max{1,1} · 5max{0,1}

= 22 · 3 · 5
= 60

These verify 60 = lcm(12, 15) = 12·15
gcd(12,15) =

12·15
3 .

2.8.2 p-adic valuations

For a natural number n,

vp(n) = largest power of prime p dividing n.
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Example.
v2(12) = v2(2

2 · 3) = 2

v2(5) = 0

v5(5
2) = 2

In general, if n = pα1
1 · · · pαk

k , then vpi(n) = αi.

You can generalize unique factorization to rational numbers. How? Give a
rational number x, write it in reduced form and then write

x = pα1
1 · · · pαk

k , αi ∈ Z.

Example.
15

20
=

3

4
=

3

22
= 2−2 · 3

15

20
=

3 · 5
22 · 5

= (3 · 5) · 2−2 · 5−1 = 2−2 · 3

Def. Given a prime number p, the p-adic valuation is the function

vp : Q → Z ∪ {∞}

given by sending a rational number x to the power of p appearing in x.

Proposition 17.

(a) vp(ab) = vp(a) + vp(b)

(b) d | n ⇐⇒ for every prime p, vp(d) ≤ vp(n)

(c) vp(a+ b) ≥ min{vp(a), vp(b)}

Why (c)? If a = pα1
1 · · · pαk

k , b = pβ1

1 · · · pβk

k , assume α1 ≤ β1, then

a+ b = pα1
1

(
pα2
2 · · · pαk

k + pβ1−α1

1 pβ2

2 · · · pβk

k

)
=⇒ vp1(a+ b) ≥ α1 = min{α1, β1} = min{vp1(a), vp1(b)}.

Example.

v2(12 + 10)

=v2(2
2 · 3 + 2 · 5)

=v2(2(2 · 3 + 5))

≥1 = min{v2(12), v2(10).}

Example.
v2(2 + 6) = v2(8) = 3
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v2(2) = 1

v2(6) = 1

min{v2(2), v2(6)} = 1

Problem. Let a, b, c,∈ N. Then that

lcm(a, b, c)2
∣∣ lcm(a, b) lcm(b, c) lcm(c, a).

Solution. It suffices to show that for any prime p,

vp(lcm(a, b, c)2) ≤ vp
(
lcm(a, b) · lcm(b, c) · lcm(c, a)

)
.

Note that

vp(lcm(a, b, c)2)

= vp(lcm(a, b, c) · lcm(a, b, c))

= 2vp(lcm(a, b, c))

= 2max{vp(a), vp(b), vp(c)}

On the other hand,

vp
(
lcm(a, b) · lcm(b, c) · lcm(c, a)

)
= vp(lcm(a, b)) + vp(lcm(b, c)) + vp(lcm(c, a))

= max{vp(a), vp(b)}+max{vp(b), vp(c)}+max{vp(c), vp(a)}.

Lemma. If x, y, z ≥ 0, then

2max{x, y, z} ≤ max{x, y}+max{y, z}+max{z, x}

Proof. If you permute x, y, z, the inequality does not change.

Therefore, we may assume without loss of generality that

x ≥ y ≥ z.

Then the inequality becomes

2x ≤ x+ y + x

= 2x+ y

⇐⇒ y ≥ 0,

which is true.
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Apply this lemma to

x = vp(a), y = vp(b), z = vp(c)

completes the proof.

Problem. If a, b ∈ N s.t.

a | b2, b3 | a4, a5 | b6, · · ·

then
a = b.

Solution. We show that for any prime p,

vp(a) = vp(b).

Note that we have
a4n+1 | b4n+2 and b4n+3 | a4n+4

for every n.

vp(a
4n+1) ≤ vp(b

4n+2)

⇐⇒ (4n+ 1)vp(a) ≤ (4n+ 2)vp(b)

=⇒ vp(a) ≤
4n+ 2

4n+ 1
vp(b) for every n ∈ N

=⇒ vp(a) ≤
(

lim
n→∞

4n+ 2

4n+ 1

)
vp(b) = vp(b).

We can use the second divisibility to similarly obtain that vp(b) ≤ vp(a), thus
we have that for every prime p,

vp(a) = vp(b).

Therefore, a = b is derived from unique prime factorization.

2.9 Oct 5, (Ir)rationality

Def. A rational number is any element of the set

Q := {a
b
: a, b ∈ Z, b ̸= 0}.

Theorem 11.
√
2 is irrational
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Proof. Assume to the contrary that
√
2 is rational, that is, there are a, b ∈ Z

s.t. √
2 =

a

b
.

This implies that
2b2 = a2.

Then

v2(2b
2) = v2(a

2)

⇐⇒ v2(2) + 2v2(b) = 2v2(a)

⇐⇒ 1 + 2v2(b) = 2v2(a)

The left hand side is odd while the right hand side is even. Therefore,
√
2 is

irrational.

Problem. Show that
√
2 +

√
3 is irrational.

Solution. Assume to the contrary that

√
2 +

√
3 =

a

b
, a, b ∈ Z.

Then

√
3 =

a

b
−
√
2

=⇒ 3 =
a2

b2
− 2a

b

√
2 + 2

=⇒
√
2 =

b

2a
(3− 2− a2

b2
)

Therefore, if
√
2 +

√
3 is rational, then

√
2 would also be rational. This is a

contradiction.

Recollections on e

log x :=

∫ x

1

dt

t
.

Def. e > 0 is the real number s.t.

log e = 1, i.e.

∫ e

1

dt

t
= 1.

It be shown that
log(ex) = x, for any x ∈ R
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Let y = ex. Take log of both sides to get

log y = log(ex) = x.

Differentiating, we get
y′

y
= 1 =⇒ y′ = y.

Then we can write the Taylor expansion of f(x) = ex centered at 0.

ex =

∞∑
n=0

f (n)(0)

n!
xn

=

∞∑
n=0

xn

n!

For x = 1

e =

∞∑
n=0

1

n!

= 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·

You can estimate that 2 < e < 3.

Theorem 12. e is irrational.

Proof. (Fourier). Assume to the contrary that

e =
a

b
, a, b ∈ N.

Consider the number

S = b!

(
e−

b∑
n=0

1

n!

)
.

S is an integer as

S = b!

(
a

b
−

b∑
n=0

1

n!

)

= (b− 1)!a−
b∑

n=0

b!

n!
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On the other hand, we could show that 0 < S < 1. Indeed, S > 0 because

S = b!

( ∞∑
n=0

1

n!
−

b∑
n=0

1

n!

)

= b!

∞∑
n=b+1

1

n!

> 0.

We also have S < 1 since

S = b!

∞∑
n=b+1

1

n!

= b!

(
1

(b+ 1)!
+

1

(b+ 2)!
+ · · ·

)
=

1

b+ 1
+

1

(b+ 1)(b+ 2)
+

1

(b+ 1)(b+ 2)(b+ 3)
+ · · ·

<
1

b+ 1
+

1

(b+ 1)2
+

1

(b+ 1)3
+ · · ·

=
1

b+ 1

( 1

1− 1
b+1

)
=

1

b
≤ 1.

Since there are no integers S such that 0 < S < 1, we obtain a contradiction.
Thus, e is irrational, as requires.

Open Problem. Is the Euler constant γ := limn→∞
(
1 + 1

2 + . . .+ 1
n − log n

)
irrational? This problem has been open for a very long time. It is a constant
that appears in various places in mathematics.

Theorem 13. π is irrational.

Proof. (Hermite, variation due to N. Bourbaki)

Assume to the contrary that

π =
a

b
, a, b ∈ N.

Consider

T (n) := bn
∫ π

0

xn(π − x)n

n!
sinx dx.

First, note that x(π − x) is positive on (0, π) and 0 only at the boundaries.

50



Similarly for sinx.

Therefore, we always have
T (n) > 0.

Now let us show that for n sufficiently large,

T (n) < 1.

In order to show this, note that

x(π − x) ≤ (
π

2
)2 for 0 ≤ x ≤ π.

Therefore,

T (n) = bn
∫ π

0

xn(π − x)n

n!
sinx dx

≤ bn

n!

∫ π

0

(
π

2
)2n dx

=
bnπ(π2 )

2n

n!

=
π( bπ

2

4 )n

n!
n→∞→ 0

The terms are those of the convergent series expansion of πebπ
2/4 from which

the convergence to 0 follows.

Choose such an n large enough to have

0 < T (n) < 1.
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T (n) =

∫ π

0

bnxn(π − x)n

n!
sinx dx

In order to reach a contradiction, we show that T (n) is an integer. For conve-
nience, let

f(x) :=
bnxn(π − x)n

n!

=
xn(bπ − bx)n

n!

=
xn(a− bx)n

n!

f(x) is a polynomial of degree 2n.

Apply IBP with u = f(x), dv = sinxdx to obtain

T (n) =

[
− f(x) cosx

]π
0

+

∫ π

0

f ′(x) cosxdx.

The first term is an integer. In fact, it vanishes. By repeatedly applying inte-
gration by parts 2n+1 times (2n+1 times because f is a polynomial of degree
2n, and so after differentiating 2n+1 time it becomes 0), we can then show that
T (n) ∈ Z. In the differentiations of f , terms containing x(a − bx) as a factor
vanish when evaluated at 0 or π. Otherwise, we have differentiated one of xn

or (a− bx)n at least n times, thus cancelling the n! in the denominator. These
terms will also be integers when evaluated at 0 or π.

Since we cannot have an integer T (n) such that 0 < T (n) < 1, π must be
irrational.

2.10 Oct 7, Counting primes

2.10.1 Sketch of solution to last bonus problem

Problem. Suppose s, t ∈ N, s ̸= t, s.t.

s2 + st+ t2 | st(s+ t)

Then we want to show that |s− t| ≥ 3
√
st

Solution. Let g := gcd(s, t). Then gcd( sg ,
t
g ) = 1.

Write

s = gx

t = gy.
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Then gcd(x, y) = 1.

We have that

st(s+ t)

s2 + st+ t2
=

g3xy(x+ y)

g2(x2 + xy + y2)

=
gxy(x+ y)

x2 + xy + y2

is an integer, i.e.
x2 + xy + y2 | gxy(x+ y).

If we show that gcd(x2 + xy + y2, xy(x+ y)) = 1, then we will have

x2 + xy + y2|g

and so
x2 + xy + y2 ≤ g.

(Using the fact that (a | bc, gcd(a, b) = 1) =⇒ (a | c)) Let me show that

gcd(x2 + xy + y2, x) = 1

and leave the other situations to you. Indeed,

gcd(x2 + xy + y2, x) = gcd(x(x+ y) + y2, x)

= gcd(y2, x)

= 1.

The latter is 1 because of, for example, the following argument. If p is a prime
s.t.

p | y2, x,

then p | y, x while gcd(x, y) = 1. So no such prime p can exist.

Consequently,
x2 + xy + y2 ≤ g

Note that

x2 + y2 ≥ 2xy

⇐⇒ x2 − 2xy + y2 ≥ 0

⇐⇒ (x− y)2 ≥ 0

So
g ≥ 3xy
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Then

| s− t |3 = g3 | x− y |3

≥ g3

= g2 · g
≥ 3g2xy

= 3(gx)(gy)

= 3st

=⇒ | s− t |≥ 3
√
3st.

Note that we have shown an even stronger conclusion.

2.10.2 Counting primes

Theorem 14. (Euclid) There are infinitely many primes.

Proof. Assume to the contrary that there are only finitely many primes p1, · · · , pk.

Consider
N := p1 · · · pk + 1.

N > 1, and so there is a prime number p such that p | N .

Then p /∈ {p1, · · · , pk}.

Indeed,

pi | p1 · · · pk + 1

=⇒ pi | 1,

a contradiction.

Therefore, p1, · · · , pk cannot be all the prime numbers. This contradiction im-
plies that we must have infinitely many primes.

Corollary 14.1. Order the primes p1 = 2 < p2 = 3 < p3 < · · · . Then

pk+1 ≤ p1 · · · pk + 1.

Proof. By the proof of the previous theorem, there is a prime p such that

p|p1 · · · pk + 1,

and so p ≤ p1 · · · pk+1. Since p cannot be one of the pi, we must have p ≥ pk+1.
The conclusion follows.

54



Let
π(x) := #{p prime ≤ x}.

This function counts the number of primes that are at most x.

Question. How does π(x) grow as x→ +∞?

The following is the celebrated Prime Number Theorem.

Theorem 15. (Hadamard, indep. de la Vallée Poussin late 1800s.)

π(x) ∼ x

log x
as x→ +∞

i.e.

lim
x→+∞

π(x)
x

log x

= 1.

The proof of this theorem is long and requires a serious understanding of complex
analysis which is beyond the scope of this course. However, what can we say by
elementary means?

Proposition. pk < 22
k

.

Proof. We use strong induction on k.

p1 = 2 < 22
1

,

p2 = 3 < 22
2

.

Assume it is true for 1 ≤ k ≤ n.

Using
pn+1 ≤ p1 · · · pn + 1

and the inductive assumption, we have

pn+1 < 22
1

· 22
2

· · · 22
n

+ 1

= 22+22+···+2n + 1

= 22
n+1−2 + 1

< 22
n+1

The conclusion follows from strong induction.

Theorem 16.
π(x) ≥ log(log x).
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Proof. Given x ≥ 3, choose n ∈ N s.t.

ee
n−1

≤ x < ee
n

From the previous proposition,

π(22
n

) ≥ n, (0)

Then from x ≤ ee
n

we obtain that

n ≥ log(log x).

On the other hand,

π(x) ≥ π(ee
n−1

), (1)

and if n > 3, then

en−1 ≥ 2n (2)

⇐⇒
(e
2

)n
≥ e (for n > 3).

Therefore, from (0), (1) and (2), we obtain for n > 3

π(x) ≥ π(e2
n

)

≥ π(22
n

)

≥ n

≥ log(log x).

If we have n ≤ 3, then for x ≥ 5,

π(x) ≥ π(5) = 3 ≥ n.

The above works for such x even if n ≤ 3. We can manually check that the
proposition also holds for x < 5. The conclusion follows.

Theorem 17. ∑
p prime≤n

1

p
> log(log n)− 1

2

Corollary 17.1.
π(n) ≥ 2 log(log n)− 1.

Proof. Proof of corollary assuming previous theorem.∑
p prime≤n

1

2
>

∑
p prime≤n

1

p
≥ log(log n)− 1

2
.
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And we have ∑
p prime≤n

1

2
=
π(n)

2
.

This implies
π(n) ≥ 2 log(log n)− 1.

Notation. The analogue of
∑

for summation is
∏

for products.

n∏
i=1

ai = a1a2 · · · an

Proof of theorem. Consider∏
p prime, p≤n

( 1

1− 1
p

)
=

∏
p prime, p≤n

(
1 +

1

p
+

1

p2
+

1

p3
+ · · ·

)
≥

n∑
k=1

1

k

Why? Every 1 ≤ k ≤ n has a prime factorization

k = pα1
1 pα2

2 · · · pαe
e

s.t. pi ≤ k ≤ n for all i. Since k ≤ n, pi ≤ n. Therefore,(
1 +

1

p1
+

1

p21
+

1

p31
+ · · ·

)
. . .
(
1 +

1

pe
+

1

p2e
+

1

p3e
+ · · ·

)
, (3)

is a factor of ∏
p prime, p≤n

(
1 +

1

p
+

1

p2
+

1

p3
+ · · ·

)
, (4)

Note that 1
k = 1

p
α1
1 p

α2
2 ···pαe

e
appears as a term in the expansion of (3), and

therefore also in the expansion of (4). As a result,

∏
p prime, p≤n

( 1

1− 1
p

)
≥

n∑
k=1

1

k
.
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In the following, p is always implicitly a prime number. We have this chain of
(in)equalities:

−
∑
p≤n

log(1− 1

p
) = log

∏
p≤n

(1− 1

p
)−1

≥ log(

n∑
k=1

1

k
)

≥ log
(∫ n

1

1

t
dt
)

= log(log n).

On the other hand, it can be shown that∑
p≤n

1

p
+

1

2
≥ −

∑
p≤n

log(1− 1

p
), (5)

Indeed, recall the Taylor expansion

− log(1− x) = x+
x2

2
+
x3

3
+ . . . .

Using this, we obtain

−
∑
p≤n

log(1− 1

p
) =

∑
p≤n

∞∑
k=1

1

kpk
.

Note that ∑
p≤n

∞∑
k=1

1

kpk
=
∑
p≤n

1

p
+
∑
p≤n

∞∑
k=2

1

kpk
.

I will show that ∑
p≤n

∞∑
k=2

1

kpk
<

1

2
.
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We have the inequalities

∑
p≤n

∞∑
k=2

1

kpk
<

∑
p≤n

1

2p2

∞∑
k=0

1

pk

=
1

2

∑
p≤n

1

p2

(
1

1− 1
p

)

=
1

2

∑
p≤n

1

p(p− 1)

<
1

2

n∑
k=2

1

k(k − 1)

=
1

2

n∑
k=2

(
1

k − 1
− 1

k

)
=

1

2

(
1− 1

2
+

1

2
− 1

3
+ . . .− 1

n− 1
+

1

n− 1
− 1

n

)
=

1

2

(
1− 1

n

)
<

1

2
.

This settles inequality (5). Hence, we have∑
p prime≤n

1

p
+

1

2
> log(log n),

as required (move the 1
2 to the other side).

2.11 Oct 10, Counting primes continued

Recall that for any ϵ > 0,

lim
x→∞

log x

xϵ
= 0

In particular, for x sufficiently large, depending on ϵ,

log x

xϵ
< 1 ⇐⇒ log x < xϵ

Take ϵ = 1
2 . Then for x sufficiently large,

x

log x
≥ x

x
1
2

=
√
x.

log(log x) ≤ 1

2
log x

≤ 1

2
x

1
3 for x sufficiently large

59



Therefore, log(log(x)) is much smaller than x
log x . This implies that our lower

bound π(x) ≥ log log(x) is not too good. Can we do better?

Question 1. Let x ∈ N, and letm := π(x). Write {p prime ≤ x} = {p1, · · · , pm}.

How many natural number n such that 1 ≤ n ≤ x have all their prime divisors
among {p1, · · · , pm}?

Answer 1. x. This is because every natural number 1 ≤ n ≤ x has all its prime
divisors at most x and so among {p1, . . . , pm}.

Now, let us bound the number of such natural numbers, x, from above as follows.
Given 1 ≤ n ≤ x,

n = r2 · s,

where r ∈ N, s is a product of distinct prime number. Every natural number n
may be written in this form.

e.g. If

n = 23 · 34 · 7
= (22 · 34) · 2 · 7
= (2 · 32)2 · 2 · 7

e.g.
n = 113 = 112 · 11

Since 1 ≤ n ≤ x, s is a product of distinct primes chosen from

{p1, · · · , pm}.

So there are 2m = 2π(x) choices for s.

On the other hand,

r2 ≤ r2s = n ≤ x

=⇒ r ≤
√
x.

Putting all this together, we obtain that

x ≤
√
x · 2π(x)

Consequently, √
x ≤ 2π(x).

Taking log, we have

1

2
log x ≤ π(x) log 2

=⇒ π(x) ≥ log x

2 log 2
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This lower bound is better than the lower bound log(log(x)). By the prime
number theorem, for sufficiently large x,

0.99 <
π(x)
x

log x

< 1.01

=⇒ 0.99x

log x
< π(x) <

1.01x

log x
for x sufficiently large.

Question 2. Can we prove that for say x ≥ 6 that there is a constant c > 0
s.t. π(x) ≥ cx

log x?

This would be even better than the last lower bound we found for π(x).

Consider the function

ψ(n) =
∑
α∈N

p prime
pα≤n

log p.

e.g.

ψ(8) = log 2 + log 2 + log 2 + log 3 + log 5 + log 7

= log(23 · 3 · 5 · 7)

Exercise.
ψ(n) = log lcm(1, 2, 3, · · · , n)

i.e.
eψ(n) = lcm(1, 2, 3, · · · , n).
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Consider now the integral∫ 1

0

xn(1− x)n dx

BT
=

∫ 1

0

xn
n∑
k=0

(
n

k

)
(−x)k dx

=

n∑
k=0

(−1)k
(
n

k

)∫ 1

0

xn+k dx

=

n∑
k=0

(−1)k
(
n

k

)
xn+k+1

n+ k + 1

∣∣∣∣1
0

=

n∑
k=0

(−1)k
(
n

k

)
· 1

n+ k + 1

=⇒ eψ(2n+1)

∫ 1

0

xn(1− x)n dx

= lcm(1, 2, · · · , 2n+ 1)

n∑
k=0

(−1)k
(
n

k

)
1

n+ k + 1

=

n∑
k=0

(−1)k
(
n

k

)
lcm(1, 2, · · · , 2n+ 1)

n+ k + 1

is an integer. It is also positive! Therefore, it is a natural number, and so

eψ(2n+1)

∫ 1

0

xn(1− x)ndx ≥ 1.

On the other hand,

x(1− x) ≤ 1

4

=⇒ xn(1− x)n ≤ (
1

4
)n

Therefore,

1 ≤ eψ(2n+1)

∫ 1

0

xn(1− x)ndx ≤ eψ(2n+1)

4n
,

and so,
ψ(2n+ 1) ≥ 2n log 2.

Suppose n ∈ N. Then choose n ∈ N s.t.

2n− 1 ≤ x < 2n+ 1
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Then we have

ψ(x) ≥ ψ(2n− 1)

≥ 2(n− 1) log 2

= (2n− 2) log 2

≥ (x− 3) log 2

≥ x

2
log 2,

where the last inequality follows from the fact that x ≥ 6 implies that x−3 ≥ x
2 .

If pα ≤ x, then α log p ≤ log x =⇒ α ≤ log x
log p . Therefore, for each prime p ≤ x,

log p may appear at most log x
log p times. Consequently, we have

ψ(x) =
∑
α∈N

p prime
pα≤x

log p ≤
∑

p prime
p≤x

log x

log p
· log p = π(x) log x.

From the inequality ψ(x) ≥ x
2 log 2 above and ψ(x) ≤ π(x) log x, we obtain

π(x) ≥ x log 2

2 log x

for each x ≥ 6. We have proved the following theorem.

Theorem 18. For x ≥ 6, we have

π(x) ≥ x log 2

2 log x
.

2.12 Oct 12, Counting primes continued

By the Prime Number Theorem,

lim
x→∞

π (x)
x

log x

= 1

In particular, for large enough x, we have

0.99 <
π (x)
x

log x

=⇒ π (x) > 0.99
x

log x
for x large enough

Notation.
n∏
i=1

ai := a1a2 · · · an.
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Observation. ∏
p prime
n<p≤2n

∣∣∣∣∣
(
2n

n

)
.

Note that (
2n

n

)
=

(2n)!

(n!)2
.

Any prime p s.t. n < p ≤ 2n does not divide the denominator, while it divides
the numerator.

Using the general fact that

gcd(a, b) = 1, a | c, b | c =⇒ ab | c,

we obtain ∏
n<p≤2n

p

∣∣∣∣∣
(
2n

n

)
.

This implies that ∏
n<p≤2n

p ≤
(
2n

n

)
. (1)

(Using general fact that a, b ∈ N, a | b =⇒ a ≤ b)

Using (
2n

0

)
+

(
2n

1

)
+ · · ·+

(
2n

2n

)
= (1 + 1)2n = 22n,

we have (
2n

n

)
≤ 22n. (2)

Combining (1) and (2), we obtain∏
n<p≤2n

p ≤ 22n.

Taking logs, we have ∑
n<p≤2n

log p ≤ log 22n = 2n log 2 (3)

Let’s introduce the function

θ(x) :=
∑
p≤x

log p.
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(3) may be written as ∑
p≤2n

log p−
∑
p≤n

log p ≤ 2n log 2

=⇒ θ(2n)− θ(n) ≤ 2n log 2, (*)

Lemma. For every r ∈ N,

θ(2r) ≤ 2r+1 log 2.

Proof. We induct on r.

If r = 1, then
θ(2) = log 2, (4)

while the RHS is 22 log 2.

If we have
θ(2k) ≤ 2k+1 log 2 (5)

then from (∗) with n = 2k

θ(2k+1) ≤ θ(2k) + 2 · 2k log 2
(5)

≤ 2k+1 log 2 + 2k+1 log 2

= 2(k+1)+1 log 2.

The conclusion follows from induction.

Given x ≥ 2, choose r ∈ N s.t.

2r ≤ x < 2r+1.

From this, we obtain

θ(x) ≤ θ(2r+1)

≤ 2r+2 log 2 (by lemma)

= 4(log 2) · 2n

≤ 4x log 2.

In particular, ∑
√
x≤p≤x

log x ≤
∑
p≤x

log p = θ(x) ≤ 4x log 2. (6)
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The LHS of (6) is at least ∑
√
x<p≤x

log
√
x

= (log
√
x)(π(x)− π(

√
x))

=
1

2
(log x)(π(x)− π(

√
x)) (7)

(6) combined with (7) implies that

1

2
(log x)

(
π(x)− π(

√
x)
)
≤ 4x log 2.

=⇒ π(x)− π(
√
x) ≤ 8x log 2

log x

=⇒ π(x) ≤ 8x log 2

log x
+ π(

√
x)

≤ 8x log 2

log x
+

√
x

Question. When is
√
x ≤ x log 2

log x
?

If this is to be true, we must have

log x

log 2
≤

√
x, i.e.

√
x log 2− log x ≥ 0

Let
f(x) :=

√
x log 2− log x.

For which x is f ′(x) ≥ 0?

f ′(x) =
log 2

2
√
x
− 1

x

f ′(x) ≥ 0 ⇐⇒ log 2

2
√
x
≥ 1

x

⇐⇒
√
x ≥ 2

log 2

⇐⇒ x ≥
( 2

log 2

)2
For x ≥ 8.32...
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Therefore
√
x ≤ x log 2

log x

for x ≥ 10.

We conclude that

π(x) ≤ 8x log 2

log x
+

√
x ≤ 9x log 2

log x

for x ≥ 10. We can also check that the final inequality is also true for 2 ≤ x < 10.
We have, therefore, proved the following theorem.

Theorem 19. For x ≥ 2 we have

π(x) ≤ 9x log 2

log x
.

This ends our discussion of analytic methods in counting primes. We now return
to algebra. Recall the following.

Theorem 20. (Fermat’s Little Theorem) If p is a prime number and n ∈ N
s.t. p ∤ n. (i.e. gcd(p, n) = 1). Then np−1 ≡ 1 (mod p), i.e.

p | np−1 − 1.

Example. Let p = 5 and n = 3. Then

35−1 ≡ 1 (mod 5).

Application. What is the last digit of 31001?

Answer. Though using Fermat’s Little Theorem is overkill, let us use it to find
the final answer. This will be a model for other problems that cannot be easily
solved without using Fermat’s Little Theorem.

We want to find 31001 (mod 10). By the division algorithm, we may write

31001 = 10q + r,

where q, r ∈ Z with 0 ≤ r ≤ 9.

r ≡ 10q + r

= 31001

≡ 11001

= 1 (mod 2).
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Also,

r ≡ 10q + r

= 31001

= 31000 · 3
= (34)250 · 3
≡ 1250 · 3
≡ 3 (mod 5),

where 34 ≡ 1 (mod 5) follows from Fermat’s Little Theorem. The only 0 ≤ r ≤ q
satisfying the above congruences modulo 2 and 5 is 3. Therefore, the last digit
of 31001 is 3.

Of course, the above is too complicated in this case, as we could do the fol-
lowing instead.

31001 = 31000 · 3 = (32)500 · 3 ≡ (−1)500 · 3 ≡ 3 (mod 10).

However, what if we want to find

31001 (mod 51)?

In the next lecture, I will start giving a proof of Fermat’s Little Theorem that is
better, leads to generalizations (Euler’s Theorem, for example), and motivates
a part of abstract algebra known as Group Theory.

2.13 Oct 17, Chinese Remainder Theorem

Problem. What is the last digit of 31001?

Solution. The remainder of 31001 divided by 10 is one of 0, 1, 2, · · · , 9.

r ≡ 31001 (mod 10)

=⇒ r ≡ 31001 (mod 5) and r ≡ 31001 (mod 2)

By Fermat’s Little Theorem,

35−1 ≡ 1 (mod 5).

Therefore,

r ≡ 31001 = 34·250+1

= (34)250 · 3 ≡ 1250 · 3
≡ 3 (mod 5).

We also have that
r ≡ 1 (mod 2).
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Warning. When dealing with powers when working mod n, you can’t reduce
the power mod n!

35 ≡ 3 (mod 5)

30 ≡ 1 (mod 5)

=⇒ 35 ̸≡ 30 (mod 5)

Problem. What is the last digit of 21002?

Solution. We want to find

21002 (mod 10).

By Fermat’s Little Theorem, 24 ≡ 1 (mod 5).

Therefore, 21002 ≡ (24)250 · 22 ≡ 1250 · 22 ≡ 4 (mod 5).

We also have that
21002 ≡ 0 (mod 2).

You can easily check that, then

21002 ≡ 4 (mod 10)

We want to be able to find, for example,

21002 (mod 51).

Lemma. Suppose n ∈ N, a ∈ Z. Then

ax ≡ b (mod n) (†)

has a solution if and only if

d := gcd(a, n) | b.

In fact, modulo n, there are exactly d solutions.

Proof. Finding x s.t.
ax ≡ b (mod n)

is equivalent to solving the equation

ax− b = ny, y ∈ Z
=⇒ ax− ny = b (*)

This has integer solution (x, y) ∈ Z× Z if and only if

d := gcd(a, n) | b
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(Essentially, Bézout’s Theorem).

Recall that if (x0, y0) is a solution of (∗), then all integer solutions are of the
form

x = x0 +
n
d t

y = y0 − a
d t

, t ∈ Z

Let t range from 0 to d− 1. We then have solutions

x0, x0 +
n

d
, x0 +

2n

d
, · · · , x0 +

(d− 1)n

d

to (†).

Why are they distinct modulo n?

Assume to the contrary that

n
∣∣∣ (x0 + in

d
)− (x0 +

jn

d
),

where 0 ≤ i, j ≤ d− 1 and i ̸= j.

Then
n
∣∣∣ (i− j)

n

d
.

However, note that ∣∣∣(i− j)
n

d

∣∣∣ ≤ d− 1

d
· n < n.

n can’t divide a natural number less than n.

If
x0 +

n

d
t

is a solution, then we can use the division algorithm, to write

t = qd+ r, 0 ≤ r ≤ d− 1,

from which it follows that

x0 +
n

d
t = x0 +

n

d
(qd+ r) = x0 +

nr

d
+ nq.

Corollary 20.1. a, n as before. Then

ax ≡ 1 (mod n)

has a solution if and only if
gcd(a, n) = 1.

In fact, if gcd(a, n) = 1, there is exactly one solution mod n.
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2.13.1 Chinese Remainder Theorem.

Theorem 21. Chinese Remainder Theorem

Suppose n1, n2, · · · , nk are natural numbers s.t.

∀i ̸= j, gcd(ni, nj) = 1.

Also, let a1, · · · ak ∈ Z.

Then the system of congruences
x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...

x ≡ ak (mod nk)

has a unique solution modulo n1n2 · · ·nk.

Suppose {
r ≡ 3 (mod 5)

r ≡ 1 (mod 2).

Then r ≡ 3 (mod 10) was the unique solution mod 10 = 2 · 5.

Proof. Why must a solution exist?

Let

N1 =
n1 · · ·nk
n1

...

Nk =
n1 · · ·nk
nk

Note that
gcd(N1, n1) = · · · = gcd(Nk, nk) = 1.

By the corollary, there are x1, · · · , xk ∈ Z s.t.

N1x1 ≡ 1 (mod n1)

...

Nkxk ≡ 1 (mod nk)

Then let
x = a1N1x1 + · · ·+ akNkxk.
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Then since n1|N2, . . . , Nk,

x ≡ a1N1x1 + 0 + · · ·+ 0 (mod n1)

≡ a1 · 1 (mod n1)

= a1 (mod n1).

Similarly, we can show that x ≡ a2 mod N2, . . . , x ≡ ak mod nk.

To show uniqueness of the solution modulo n1 · · ·nk, suppose x′ and x′′ are
two solutions. Then

x′ ≡ a1 ≡ x′′ (mod n1)

...

x′ ≡ ak ≡ x′′ (mod nk).

Therefore,

n1 | x′ − x′′

n2 | x′ − x′′

...

nk | x′ − x′′.

Since for every i ̸= j, gcd(ni, nj) = 1,

n1 · · ·nk
∣∣ x′ − x′′,

i.e.
x′ ≡ x′′ (mod n1 · · ·nk).

This means that x′ and x′′ are the same modulo n, as required.

Problem. Find all solutions to the system
x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

Solution. Let N1 = 3 · 5, N2 = 2 · 5, N3 = 2 · 3. Then we first find x1 s.t.

N1x1 = 15x1 ≡ 1 (mod 2)

Note that 15x1 ≡ x1 (mod 2). So x1 = 1 is a solution. We also want x2 s.t.

N2x2 = 10x2 ≡ 1 (mod 3).
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Again,
1 ≡ 10x2 ≡ x2 (mod 3),

and so we can take x2 = 1.

Finally, we want x3 s.t.

N3x3 = 6x3 ≡ 1 (mod 5) =⇒ x3 ≡ 1 (mod 5).

Therefore, we can take x3 = 1.

Then

x = a1N1x1 + a2N2x2 + a3N3x3

= 1 · 3 · 5 · 1 + 2 · 2 · 5 · 1 + 3 · 2 · 3 · 1
= 15 + 20 + 18 = 53.

Therefore, x ∈ Z s.t.
x ≡ 53 ≡ 23 (mod 30)

are all the solutions.

Problem. There are 17 thieves who rob a bank. They try to divide the dollar
equally amongst themselves, but 3 dollar remains. Along the way, one of them
dies. When they return to the hiding place, they try a gain, but 10 dollars
remain. One of them kills another out of greed.

They try again, and they manage to divide the money equally this time. What
is the minimum number of dollars they stole?

Solution. Let d be the number of dollars stolen. Then
d ≡ 3 (mod 17)

d ≡ 10 (mod 16)

d ≡ 0 (mod 15)

In this case, we have

N1 = 16 · 15
N2 = 17 · 15
N3 = 17 · 16

We want to find x1, x2, x3 ∈ N s.t.

16 · 15x1 = N1x1 ≡ 1 (mod 17)

17 · 15x2 = N2x2 ≡ 1 (mod 16)

17 · 16x3 = N3x3 ≡ 1 (mod 15).
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1 ≡ 16 · 15x1 ≡ (−1) · (−2)x1 (mod 17)

⇐⇒ 2x1 ≡ 1 (mod 17)

=⇒ x1 ≡ 18x1 = 9 · 2x1 ≡ 9 (mod 17)

Take x1 = 9.

1 ≡ 17 · 15x2 ≡ 1 · (−1)x2 (mod 16)

=⇒ x2 ≡ −1 ≡ 15 (mod 16)

Take x2 = 15.

1 ≡ 17 · 16x3 ≡ 2 · 1x3 ≡ 2x3 (mod 15)

=⇒ x3 ≡ 16x3 ≡ 8(2x3) ≡ 8 (mod 15)

Take x3 = 8.

Then all solutions are congruent to

x = a1N1x1 + a2N2x2 + a3N3x3

= 3 · 16 · 15 · 9 + 10 · 17 · 15 · 15 + 0︸︷︷︸
=a3

· · · ·

modulo 17 · 16 · 15.

Equivalently,
d ≡ 3930 (mod 4080)

The smallest such d ∈ N is 3930.

Another solution: 
d ≡ 3 (mod 17)

d ≡ 10 (mod 16)

d ≡ 0 (mod 15)

From the last equation,

d = 15x for some x ∈ Z

From the second equation,

15x = d ≡ 10 (mod 16)

⇐⇒ − x ≡ 10 (mod 16)

⇐⇒ x ≡ −10 ≡ 6 (mod 16)
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This implies that

x = 16y + 6 with y ∈ Z
=⇒ d = 15x = 15(16y + 6)

=⇒ d = 15 · 16y + 90

From the first equation,

15 · 16y + 90 = d ≡ 3 (mod 17).

Therefore,

15 · 16y ≡ 3− 90 (mod 17)

=⇒ 2y ≡ −87 (mod 17)

=⇒ 2y ≡ −2 (mod 17)

=⇒ y ≡ −1 ≡ 16 (mod 17)

=⇒ y = 17z + 16 with z ∈ Z.

Then

d = 15 · 16y + 90

= 15 · 16(17z + 16) + 90

= 15 · 16 · 17z + (15 · 162 + 90).

2.14 Oct 21

Recall the following proposition:

Proposition 18. If a ∈ Z, n ∈ Z, then

ax ≡ 1 (mod n)

has a solution if and only if gcd(a, n) = 1.

In fact, if gcd(a, n) = 1, it has a unique solution modulo n.

Moral of this proposition is that you can ”invert” a modulo if and only if
gcd(a, n) = 1.

e.g.

5x ≡ 1 (mod 3).

If x ≡ 2 (mod 3), then

5x ≡ 5 · 2 = 10 ≡ 1 (mod 3)

When gcd(a, n) = 1, we can speak of a−1 mod n. In the above situation,
5−1 ≡ 2 (mod 3).
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e.g.

7x ≡ 1 (mod 9).

If x ≡ 4 (mod 9), then

7x ≡ 7 · 4 = 28 ≡ 1 (mod 9).

Therefore,
7−1 ≡ 4 (mod 9).

If you want to use the Euclidean algorithm, then solving 7x ≡ −1 (mod 9) is
more or less the same as solving

7x− 1 = 9y ⇐⇒ 7x− 9y = 1

2.14.1 New proof of Fermat’s Little Theorem

Consider a prime p and the numbers

1, 2, 3, · · · , p− 1.

If you take x ∈ Z s.t. p ∤ x, then

x = pq + r, 0 < r ≤ p− 1

In order to prove that if p ∤ a then

ap−1 ≡ 1 (mod p).

What we can do is consider

a, 2a, 3a, · · · , (p− 1)a (mod p)

Claim. a, 2a, 3a, · · · , (p−1)a reduced modulo p is exactly the set 1, 2, 3, · · · , p−
1 again.

Proof. It suffices to show that none of a, 2a, 3a, · · · , (p − 1)a is divisible by p,
and they are distinct modulo p.

None of them is divisible by p because p ∤ a and p ∤ i for any 1 ≤ i ≤ p− 1.

They are also all distinct modulo p.

Otherwise, we can find 1 ≤ i, j ≤ p− 1 s.t. i ̸= j and

ai ≡ aj (mod p) (1)

76



However, gcd(a, p) = 1, so there exists a−1 (mod p), and so

i ≡ 1 · i ≡ (a−1a) · i ≡ a−1(a · i)
≡ a−1(a · j) ≡ 1 · j ≡ j (mod p)

Since gcd(a, p) = 1, there is an x s.t.

ax ≡ 1 (mod p).

Multiply both sides of (1) by x.

(1) is equivalent to
p | ai− aj = a(i− j)

p ∤ a =⇒ p | i− j

Since i ≡ j (mod p) and 1 ≤ i, j ≤ p− 1, i = j.

Now since a, 2a, · · · , (p− 1)a are exactly 1, 2, · · · , p− 1 modulo p.

We have

a(2a)(3a) · · · ((p− 1)a)

≡1 · 2 · 3 · · · (p− 1) (mod p)

i.e.
ap−1(p− 1)! ≡ (p− 1)! (mod p)

Since p is a prime, p ∤ (p− 1)!. Therefore, (p− 1)! is invertible modulo p.

=⇒ ap−1 ≡ 1 (mod p),

as required.

We now discuss Euler’s Theorem, a generalization of Fermat’s Little Theorem.

Def. The Euler totient function φ is given by

φ(n) := #{a ∈ N | 1 ≤ a ≤ n and gcd(a, n) = 1}

e.g.

φ(3) = #{1 ≤ a ≤ 3 s.t. gcd(a, 3) = 1}
= #{1, 2}
= 2

More generally, if p is a prime number, then

φ(p) = #{1 ≤ a ≤ p | gcd(a, p) = 1}
= #{1, 2, · · · , p− 1}
= p− 1.
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e.g.

φ(4) = #{1 ≤ a ≤ 4 : gcd(a, 4) = 1}
= #{1, 3}
= 2

Euler generalized Fermat’s Little Theorem as follows:

Theorem 22. [Euler] If a ∈ Z and n ∈ N s.t. gcd(a, n) = 1, then

aφ(n) ≡ 1 (mod n).

If n = p is a prime number, then

gcd(a, p) = 1 =⇒ aφ(p) ≡ 1 (mod p)

Proof of Euler’s Theorem 22. Consider {a1, · · · , aφ(n)} = {a ∈ N | 1 ≤ a ≤
n, gcd(a, n) = 1}.

Then if gcd(a, n) = 1, we have by a similar argument as in the proof of Fermat’s
Little Theorem that modulo n

aa1, aa2, · · · , aaφ(n)

is that same as
a1, · · · , aφ(n).

Therefore,
(aa1) · · · (aaφ(n)) ≡ a1 · · · aφ(n) (mod n)

But then
aφ(n)a1 · · · aφ(n) ≡ a1 · · · aφ(n) (mod n)

and so
n
∣∣∣ a1 · · · aφ(n)(aφ(n) − 1).

2.15 Oct 24

How to compute φ(n) in general? Consider

φ(n)

n
= P[1 ≤ a ≤ n | gcd(a, n) = 1].

Let n = pα1
1 · · · pαk

k be the prime factors of n.

Then the probability that 1 ≤ a ≤ n and pi ∤ a is 1 − 1
pi
. This is true for each

pi, and so
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φ(n)

n
= (1− 1

p1
) · · · (1− 1

pk
)

=⇒ φ(n) = n(1− 1

p1
) · · · (1− 1

pk
).

e.g.

φ(33) = 33(1− 1

3
)

= 32(3− 1)

= 18.

Proof of proposition. An argument is probabilistic. Note that

φ(n)

n
= P[1 ≤ a ≤ n | gcd(a, n) = 1]

A number 1 ≤ a ≤ n is relatively prime to n ⇐⇒ p1 ∤ a, p2 ∤ a, · · · , pk ∤ a.

The probability that pi ∤ a is 1 minus the probability that pi | a, i.e.

1− n/pi
n

= 1− 1

pi
.

Go through all primes less or equal to n. Hence we can get

φ(n)

n
= (1− 1

p1
) · (1− 1

p2
) · · · (1− 1

pk
)

=⇒ φ(n) = n(1− 1

p1
) · · · (1− 1

pk
).

as required.

Problem.
What is 21003 ≡ (mod 45)?

Solution. gcd(2, 45) = 1. By Euler’s theorem,

2φ(45) ≡ 1 (mod 45)

φ(45) = φ(32 · 5)

= 32 · 5(1− 1

3
)(1− 1

5
)

= 32 · 5(2
3
)(
4

5
)

= 3 · 2 · 4
= 24.
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And so
224 ≡ 1 (mod 45).

Question. How can we write

1003 = 24q + r, 0 ≤ r ≤ 23.

Solution. Take q = 41, r = 19. So

21003 = 224·41+19

= (224)41 · 219 (mod 45)

≡ 219 (mod 45)

Let’s find 219 (mod 45). Then let’s find

219 (mod 32)

and
219 (mod 5).

2φ(3
2) ≡ 1 (mod 32) by Euler’s theorem

and

φ(32) = 32(1− 1

3
) = 6.

19 = 3 · 6 + 1 and so

219 = 23·6+1 = (26)3 · 2 ≡ 2 (mod 9).

By FLT,
24 ≡ 1 (mod 5).

19 = 4 · 4 + 3, and so

219 = 24·4+3 = (24)4 · 23 ≡ 23 ≡ 3 (mod 5).

By the CRT (Chinese Remainder Theorem), there is a unique solution modulo
45 to

x ≡ 2 (mod 9)

x ≡ 3 (mod 5)

Let N1 = 5, N2 = 9.
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Then we want to find x1 and x2 s.t.

5x1 ≡ N1x1 ≡ 1 (mod 9) (1)

9x2 ≡ N2x2 ≡ 1 (mod 5) (2)

Multiply (1) by 2 to get

x1 ≡ 10x1 ≡ 2 (mod 9).

Take x1 = 2.

Note that 9 ≡ −1 (mod 5) so (2) is equiv to

−x2 ≡ 9x2 ≡ 1 (mod 5)

=⇒ x2 ≡ −1 ≡ 4 (mod 5)

Take x2 = 4.

By the CRT,

x = a1N1x1 + a2N2x2

= 2 · 5 · 2 + 3 · 9 · 4
= 20 + 108

= 128

≡ 38 (mod 45)

is the unique solution modulo 45.

Theorem 23 (Wilson). If p is a prime number, then

(p− 1)! ≡ −1 (mod p).

Recall the following: if gcd(a, p) = 1, then

ax ≡ 1 (mod p)

has a unique solution mod p.

Solution. Write
(p− 1)! = 1 · 2 · · · · · · (p− 1)

Whenever x ∈ {1, 2, · · · , p − 1} and x2 ̸= 1 (mod p), you can find a y ∈
{1, 2, · · · , p− 1} s.t. y ̸= x and xy ≡ 1 (mod p).

Which ones can’t be paired with another number?

Exactly those x s.t.
x2 ≡ 1 (mod p)
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Equivalently, when
p | x2 − 1 = (x− 1)(x+ 1)

i.e.
p | x− 1 or p | x+ 1

i.e.
x ≡ 1 (mod p) or x ≡ −1 ≡ p− 1 (mod p).

Therefore,

(p− 1)! ≡ 1 · (2 · 3 · · · (p− 2)) · (p− 1)

≡ 1 · (−1)

≡ −1 (mod p)

Note that when p = 2, we have

(2− 1)! = 1 ≡ −1 (mod 2).

Theorem 24. Suppose p is an odd prime number. Then

x2 ≡ −1 (mod p)

has a solution if and only if

p ≡ 1 (mod 4).

2.16 Oct 26

Proof. By Wilson’s theorem, we know that

(p− 1)! ≡ −1 (mod p).

Note that

(p− 1)! = 1 · 2 · · · (p− 1

2
) · (p+ 1

2
) · · · (p− 1).

p+ 1

2
= p− p− 1

2
≡ −(

p− 1

2
) (mod p)

p+ 3

2
= p− p− 3

2
≡ −(

p− 3

2
) (mod p)

...

p− 1 = p− 1 ≡ −1 (mod p)
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Consequently,

(p− 1)! ≡ 1 · 2 · · · (p− 1

2
) · (−1) · (−2) · · · (−(

p− 1

2
))

≡ (−1)
p−1
2 [1 · 2 · · · (p− 1

2
)]2 (mod p).

Since p ≡ 1 (mod 4), p−1
2 is even!

We have deduced that when p ≡ 1 (mod 4),

(p− 1)! ≡ [(
p− 1

2
)!]2 (mod p).

By Wilson’s theorem, this is ≡ −1 (mod p).

One direction of the theorem is proved.

When p = 5, the proof boils down to the following computation:

−1 ≡ (5− 1)! = 1 · 2 · 3 · 4 (mod 5)

= (1 · 2)(5− 2)(5− 1)

≡ (1 · 2)(−2)(−1)

≡ (−1)
5−1
2 (2!)2 = 22 (mod 5)

The other direction say that if p is an odd prime number and

x2 ≡ −1 (mod p)

has a solution, then p ≡ 1 (mod 4). We need to introduce the notion of orders
to prove this.

Def. Suppose n ∈ N and a ∈ Z s.t. gcd(a, n) = 1. Then the order of a modulo
n is the smallest k ∈ N s.t.

ak ≡ 1 (mod n).

⋆ Warning: Fermat’s Little theorem and Euler’s Theorem do not necessarily

provide the smallest power k for which ak ≡ 1 (mod n).

e.g. Take n = p = 7 and a = 2. Fermat’s Little Theorem say that 27−1 ≡
1 (mod 7).

However, we have 23 = 8 ≡ 1 (mod 7).

Theorem 25. a, n as before. Then let ordn(a) be the order of a modulo n.
(ordn(a) ∈ N smallest such that aordn(a) ≡ 1 (mod n))

If am ≡ 1 (mod n), then
ordn(a)

∣∣ m.
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Proof. Assume to the contrary that

ordn(a) ∤ m.
This assumption, combined with the division algorithm, implies that

m = ordn(a)q + r, q, r ∈ Z, 0 < r < orda(n)

We then have

1 ≡ am = aordn(a)q+r (mod n)

= (aordn(a))q · ar (mod n)

≡ 1q · ar = ar (mod n).

Since 0 < r < orda(n), this contradicts the minimality of ordn(a).

The conclusion follows.

To prove the other direction, note that x2 ≡ −1 mod p implies that x4 ≡ 1 mod
p. Therefore, the order of x modulo p divides 4. Consequently, it is 1, 2, or 4.
It is not 1 or 2 as x2 ≡ −1 ̸≡ 1 mod p (p is odd). The order of x is, therefore, 4.
On the other hand, by Fermat’s Little Theorem, we have xp−1 ≡ 1 mod p (not
that since x2 ≡ −1 mod p, gcd(x, p) = 1). By the previous theorem, we must
have 4|p− 1, that is, p ≡ 1 mod 4, as required.

2.16.1 Reformulation of Fermat’s Little Theorem

Suppose p is a prime number.

Consider the sets

0 = pZ = {· · · ,−2p,−p, 0, p, 2p, 3p, · · · }
1 = 1 + pZ = {· · · , 1− 2p, 1− p, 1, 1 + p, 1 + 2p, 1 + 3p, · · · }
...

p− 1 = (p− 1) + pZ
p = 0

Recall the following:{
a ≡ b (mod p)

c ≡ d (mod p)
=⇒

{
a+ c ≡ b+ d (mod p)

ac ≡ bd (mod p)

So we have {
a ≡ b

c ≡ d
=⇒

{
a+ c ≡ b+ d

ac ≡ bd
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From 0, 1, · · · , p− 1, let’s keep only those elements a s.t. there is an x satisfying

ax = a x = 1 ⇐⇒ ax ≡ 1 (mod p).

Note that for any a ∈ {0, 1, · · · , p− 1},

a · 1 = a · 1 = a.

The ”invertible” a are precisely those a a.t. gcd(a, p) = 1.

Therefore, every element of

(Z/pZ)× := {1, 2, · · · , p− 1}

has an inverse. We also have that

(a · b)c = abc = a · (b · c)

(associativity).

Def. A group (G, ∗) is a set G with a binary operation

∗ : G×G→ G

satisfying

1. There is a distinguished element 1 ∈ G s.t. for every g ∈ G, 1∗g = g∗1 = g.

2. ∗ is associative.

a ∗ (b ∗ c) = (a ∗ b) ∗ c for every a, b, c ∈ G

3. For every g ∈ G there is x ∈ G such that

g ∗ x = x ∗ g = 1.

Theorem 26 (Lagrange). If G is a finite group with |G| elements, then for
every g ∈ G,

g|G| = 1.

e.g. In (Z/pZ)×, ap−1 = 1, i.e. ap−1 ≡ 1 (mod p) for every a such that
gcd(a, p) = 1.

2.17 Oct 28

Suppose p is an odd prime and that

x2 ≡ −1 (mod p)

has a solution. Then
p ≡ 1 (mod 4)
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Proof.

x4 = (x2)2 ≡ (−1)2 = 1 (mod p)

Therefore,
ordp(x) | 4 =⇒ ordp(x) = 1, 2, or 4.

However, x2 ≡ −1 ̸≡ 1 (mod p) since p is odd.

Therefore, ordp(x) = 4.

On the other hand,

x2 ≡ −1 (mod p) =⇒ gcd(x, p) = 1.

Indeed, if p | x, then from p | x2 + 1, we would obtain p | 1, a contradiction.

By Fermat’s Little Theorem,

xp−1 ≡ 1 (mod p).

Consequently,
4 = ordp(x) | p− 1 =⇒ p ≡ 1 (mod 4).

Valuations of n! (p-adic)

Question. For prime p, what is vp(n!)?

Note that
n! = 1 · 2 · · ·n

How many of 1, 2, 3, · · · , n are divisible by p but not p3?

Floor function definition. Given x ∈ R, ⌊x⌋ is the largest integer ≤ x.

e.g.

⌊2.75⌋ = 2

⌊−1.25⌋ = −2

Lemma. The number of integers 1 ≤ a ≤ n s.t. p | a is ⌊np ⌋.

Proof of Lemma. p | a ⇐⇒ ∃k ∈ Z s.t.

a = pk.

We want this multiply to satisfy

1 ≤ a = pk ≤ n
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Equivalently, we want

1 ≤ k ≤
⌊n
p

⌋
.

So we have ⌊np ⌋ choices for such k.

The conclusion follows.

e.g. How many numbers among {1, 2, 3, 4, 5, 6, 7, 8} are multiples of 3?

Answer: ⌊8
3

⌋
= 2.

Among 1, 2, 3, · · · , n, exactly ⌊n
p

⌋
−
⌊ n
p2

⌋
have p-adic valuation 1.

How many a ∈ {1, 2, · · · , n} satisfy

vp(a) = 2?

The answer is ⌊ n
p2

⌋
−
⌊ n
p3

⌋
.

Continuing in this way, the number of a ∈ {1, · · · , n} s.t. vp(a) = k is⌊ n
pk

⌋
−
⌊ n

pk+1

⌋
.

So

vp(n!) =
(⌊n
p

⌋
−
⌊ n
p2

⌋)
+ 2
(⌊ n
p2

⌋
−
⌊ n
p3

⌋)
+ 3
(⌊ n
p3

⌋
−
⌊ n
p4

⌋)
+ · · ·

=
⌊n
p

⌋
+
⌊ n
p2

⌋
+
⌊ n
p3

⌋
+ · · ·

Proposition 19. p prime,

vp(n!) =
⌊n
p

⌋
+
⌊ n
p2

⌋
+
⌊ n
p3

⌋
· · · .

e.g.

v2(5!) =
⌊5
2

⌋
+
⌊ 5

22

⌋
+
⌊ 5

23

⌋
· · · = 2 + 1 = 3

Another way of computing vp(n!) is as follows.
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Write n = akp
k + ak−1p

k−1 + · · · + a1p
1 + a0, where 0 ≤ ai ≤ p − 1. (base p

expansion of n).

The proposition way then be reformulated as

vp(n!) =
⌊n
p

⌋
+
⌊ n
p2

⌋
+ · · ·

=
n− sp(n)

p− 1

=
n− (a0 + a1 + · · ·+ ak)

p− 1
.

By definition, sp(n) = a0 + . . . + ak is the sum of the digits of n in its base p
expansion. Note that⌊n

p

⌋
=
⌊akpk + · · ·+ a1p+ a0

p

⌋
=
⌊
akp

k−1 + ak−1p
k−2 + · · ·+ a0

p

⌋
= akp

k−1 + · · ·+ a2 +
⌊a0
p

⌋
︸ ︷︷ ︸
=0

⌊ n
p2

⌋
=
⌊akpk + · · ·+ a1p+ a0

p2

⌋
=
⌊
akp

k−2 = ak−1p
k−3 + · · ·+ a1p+ a0

p2

⌋
= akp

k−2 + · · ·+ a2 +
⌊a1p+ a0

p2

⌋
︸ ︷︷ ︸

=0

Continuing in this fashion, we end with⌊ n
pk

⌋
= ak

Note that ⌊npk+1⌋ = 0 and also for higher powers of p. Summing these, we
obtain using geometric sums of the form

1 + p+ p2 + . . .+ pa =
pa+1 − 1

p− 1
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that

vp(n!) = ak(1 + p+ . . .+ pk−1) + ak−1(1 + p+ . . .+ pk−2) + . . .+ ak

= ak

(
pk − 1

p− 1

)
+ ak−1

(
pk−1 − 1

p− 1

)
+ . . .+ a1

(
p− 1

p− 1

)
=

(akp
k + ak−1p

k−1 + . . .+ a1p)− (ak + ak−1 + . . .+ a1)

p− 1

=
(akp

k + ak−1p
k−1 + . . .+ a1p+ a0)− (ak + ak−1 + . . .+ a1 + a0)

p− 1

=
n− sp(n)

p− 1

e.g.

v2(5!) =
5− s2(5)

2− 1

=
5− 2

2− 1

= 3.

Problem. n ∈ N. Then

n!

∣∣∣∣ n−1∏
k=0

(2n − 2k).

Proof. Recall that

a | b ⇐⇒ for every prime p, vp(a) ≤ vp(b).

Therefore, it suffices to show that for every prime p,

vp(n!) ≤ vp

( n−1∏
k=0

(2n − 2k)

)

For p ≤ 2, we have

v2

( n−1∏
k=0

(2n − 2k)

)
≥ v2(2

n − 2n−1)

= v2(2
n−1)

= n− 1.
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On the other hand

v2(n!) =
n− s2(n)

2− 1

≤ n− 1

2− 1

= n− 1.

Now suppose p is an odd prime. Since p is odd, gcd(z, p) = 1.

By Fermat’s Little Theorem, therefore, (if 1 ≤ j(p− 1) ≤ n)

2p−1 ≡ 1 (mod p) =⇒ 2j(p−1) ≡ 1 (mod p) for any j ∈ N.

First note that

vp(n!) =
n− sp(n)

p− 1

≤
⌊n− 1

p− 1

⌋
.

On the other hand,

2k(p−1) ≡ 1 (mod p) =⇒ p
∣∣∣ 2k(p−1) − 1.

Also, for p odd,

vp

( n−1∏
k=0

(2n − 2k)

)

=vp

(
20 · 21 · · · 2k−1

n−1∏
k=0

(2n−k − 1)
)

= vp

(
2

n(n−1)
2

)
︸ ︷︷ ︸

=0

+

n∑
k=1

vp(2
k − 1).

At least how many of 2k − 1 are divisible by p?

By Fermat’s Little Theorem, at least those k = j(p−1) s.t. 1 ≤ k = j(p−1) ≤ n.

The number of such j is at least ⌊ n
p−1⌋, so at least this many of 2k − 1 have

p-adic valuation at least 1. Therefore, from the above computations and this
fact, we have
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Hence,

vp

( n−1∏
k=0

(2n − 2k)

)

≥
n∑
k=1

vp(2
k − 1)

≥
n∑

j∈N:1≤j(p−1)≤n

vp(2
k − 1)

≥
n∑

j∈N:1≤j(p−1)≤n

1

=
⌊ n

p− 1

⌋
≥
⌊n− 1

p− 1

⌋
≥ vp(n!)

We have deduced that for every odd prime p as well that vp(n!) ≤ vp

(∏n−1
k=0(2

n−

2k)

)
. We also have it for p = 2 above. We conclude the solution to the

problem.

Remark. This divisibility result fits within the much larger framework of gener-
alized factorials whose foundations were laid out in the undergraduate Harvard
thesis of the recent fields medalist (equivalent of the Nobel prize in mathemat-
ics) Manjul Bhargava (professor at Princeton). Of course, his fields medal was
not awarded for this work!

2.18 Nov 2

2.18.1 A Taste of Group Theorem

Recall the following definition:

Def.Group A group (G, ∗) is a set G equipped with a binary operation

∗ : G×G→ G

such that

1. There is an element e ∈ G such that for every x ∈ G

x ∗ e = e ∗ x = x
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2. Associativity: for any three elements x, y, z ∈ G

(x ∗ y) ∗ z = x ∗ (y ∗ z)

3. For any x ∈ G, there is a y ∈ G such that

x ∗ y = y ∗ x = e

Example 1.

G = R× := R\{0}
∗ = multiplication

e = 1 (for any x ∈ R\{0}, x · 1 = 1 · x = x)

It is associative, for any x ∈ R\{0},

x ·
(
1

x

)
=

(
1

x

)
· x = 1

Example 2.

G = Z
∗ = +

e = 0 (for any x ∈ Z, x+ 0 = 0 + x = x)

It is clearly associative, and for any x ∈ Z,

x+ (−x) = (−x) + x = 0

Example 3.

Z/nZ = {0, 1, 2, · · · , n− 1}

{
0 = n

−1 = n− 1

∗ = + modulo n.

For instance

1 + 2 = 1 + 2 = 3

n− 1 + 1 = n = 0

+ modulo n is associative:

a+
(
b+ c

)
= a+ b+ c = a+ b+ c(

a+ b
)
+ c = a+ b+ c = a+ b+ c
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Furthermore, for any a ∈ Z/nZ, we have additive inverses:

a+−a = a+ (−a) = 0

−a+ a = (−a) + a = 0

Example 4.

(Z/pZ)× = {1, 2, · · · , p− 1} p prime

∗ = multiplication modulo p

It is associative:
a ·
(
b · c

)
= a ·

(
bc
)
= a · (bc) = abc

If gcd (a, p) = gcd (b, p) = 1. Then

gcd (ab, p) = 1

ab = r ∈ (Z/pZ)× , ab = pq + r q, r ∈ Z, 0 < r < p

Also note that for any a ∈ (Z/pZ)×,

1 · a = 1 · a = a = a · 1

For any a ∈ (Z/pZ)×, there is a b ∈ (Z/pZ) such that

a · b = b · a = 1

Why?
a · b = 1 ⇔ ab ≡ 1. (mod p)

This has a solution in b because gcd(a, p) = 1.All of this means that
(
(Z/pZ)× , ·

)
is a group.

Note that
|(Z/pZ)×| = p− 1

Example 5.

{1 ⩽ a ⩽ n : gcd (a, n) = 1} =
{
a1, · · · aφ(n)

}
Then let

(Z/nZ)× =
{
a1, · · · aφ(n)

}
∗ = multiplication modulo n

Note that we always have 1 ∈ (Z/nZ)× since gcd(1, n) = 1. This is the unit
e = 1.

∗ is clearly associative as in the previous example where n is a prime.

By the exact same argument, every a ∈ (Z/nZ)× has an inverse (mod n).

Note that
|(Z/nZ)×| = φ (n) .
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Theorem 27 (Lagrange). If G is a finite group, then for every x ∈ G of size
|G|

x|G|︸︷︷︸
x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸

|G| times

= e

Example 1.

1. In (Z/pZ)×, Lagrange’s theorem says that for any a ∈ (Z/pZ)×,

ap−1 = 1

i.e. for any a ∈ Z such that gcd (a, p) = 1

ap−1 ≡ 1 (mod p)

i.e. Fermat’s Little Theorem.

2. In (Z/nZ)×, it says that for any a ∈ (Z/nZ)×,

aφ(n) = 1,

i.e. Euler’s theorem.

Example 2.

GL2 (R) :=
{
A =

[
a b
c d

]
: a, b, c, d ∈ R such that det (A) = ad− bc ̸= 0

}
∗ = matrix multiplication

e =

[
1 0
0 1

]
= I2

Note that GL2(R) is closed under matrix multiplication because det(AB) =
det(A) det(B), and so if det(A) ̸= 0 ̸= det(B), then det(AB) ̸= 0, that is,
AB ∈ GL2(R).

As you know from linear algebra, matrix multiplication is associative.

Since det (A) ̸= 0 for any A ∈ GL2 (R), there is an inverse A−1 ∈ GL2 (R).

GL2 (R) is a group, but it is not true in general that

AB = BA

For example, [
0 1
1 0

] [
1 1
0 1

]
=

[
0 1
1 1

]
[
1 1
0 1

] [
0 1
1 0

]
=

[
1 1
1 0

]
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2.18.2 Applications of Group Theory to Combinations

Problem. Consider an 8× 8 board filled by checkers as follows:

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Figure 2: 8× 8 board filled by checkers

The rule is that you can jump diagonally over a piece in an adjacent square into
an empty square, and then remove the piece over which you have jumped.

Is it possible to find a sequence of moves and end up with exactly 1 piece
on the board at the end?

Solution. Answer: It is impossible.

Consider the symmetries of a rectangle that is not a square. a represents flipt-
ting along the verticle line, b represents flip along the horizontal line, c represents
rotation by 180◦, while e represents doing nothing.

G := {a, b, c, e} (Klein 4-group)

is closed under composition of the moves. It is clear that e is the identity, it is
associative. Also, each element is its own inverse.

This forms a group with the properties

a2 = b2 = c2 = e
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ab = c, bc = a, ca = b

that you can see geometrically. Note that ab = ba, bc = cb, ca = ac (it is an
abelian group, i.e. for any x, y ∈ G, xy = yx).

You can also identify G with

Z/2Z× Z/2Z = {(0, 0), (1, 0), (0, 1), (1, 1)}

where the composition law is component-wise addition modulo 2. You can view
e as (0, 0), a as (1, 0), b as (0, 1), and c as (1, 1).

Color the squares of the board using the elements of G as above.

b a c b

b a c b

b a c b

b a c b

c b a c

c b a c

c b a c

c b a c

Figure 3: Coloring

The crucial observation is that we can define a quantity that does not change
under the admissible moves. Let I be the product of all elements of G in the
squares with a checker piece. When a move is made, for example with a piece
on a square labeled as a over a piece labeled as b, the two pieces are removed
and a piece is placed on a square with label c. Since ab = c, the quantity I does
not change under such a move. Similarly, I does not change under the other
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jumps.

Initially, the product of the elements in squares with a checker piece is I =
b4c4a2b2c2a2b4c4 = e. A board with exactly one checker on it has I equal to
either a, b, or c. Since I does not change under our possible moves, we cannot
get from our initial state to a state with exactly one checker piece.

Therefore, it is impossible to end up with exactly one checker piece.

Remark. The idea of invariants is pervasive in mathematics. It is another proof
idea. Usually, when one wants to prove the impossibility of a phenomenon, or
that two geometric objects are fundamentally different, one associates an object
that does not change under the possible allowed moves. If the two geometric
objects or states or...have different gadgets associated to them, then it is impos-
sible to go from the first state to the final state using only the allowed sequence
of operations.

An idea underlying invariants is that, typically, we are dealing with very com-
plicated objects. Therefore, we try to extract something more tractable from
the objects. Our brains do this all the time. If we want to prove that person X
is not person Y , we may look at their eye colors or hair colors. If they have dif-
ferent eye colors, they are different people (assuming eye color does not change
or that it is measured at the exact same time). However, different people often
have the same eye colors, and so we look for different physical features. Some-
times, people are identical twins, making distinctions more difficult. Therefore,
we look for psychological differences. If that fails, we look at gene expression
and epigenetic information (identical twins have the same DNA, from my under-
standing). The analogue of this search for finer and finer invariants also happens
in mathematics. Sometimes, this becomes extremely difficult, as the finer the
invariants become, the more difficult it is to compute them. The construction
of invariants is an art.

In mathematics, the invariants could be as simple as in the above problem,
they could be some other algebraic gadget, they could be counts of solutions to
equations (for example, coming from physics), or some other object. There is a
wealth of mathematics dedicated to interesting invariants in various settings.

2.19 Nov 4

2.19.1 A little bit of group theory and their special function

Answer: Impossible.

G = {a, b, c, e}
a2 = b2 = c2 = e

ab = c, bc = a, ca = b
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G ≃ (Z/2Z)× (Z/2Z) = {(0, 0), (1, 0), (0, 1), (1, 1)}

Define I as the product of all elements in squares with checker pieces.

In the initial position,
I = e.

If exactly one chip, then the invariant is a, b, or c ̸= e.

Problem. Suppose we have a 4× 11 rectangle.

Figure 4: 4× 11 rectangle

Is it possible to tile the 4× 11 rectangle using the following L-shaped pieces?

Figure 5: L shape piece

Special Functions

Def. Suppose n ∈ N. Then

τ(n) :=
∑

d|n,d∈N

1 = number of positive divisors of n

e.g.
τ(10) = τ(21 · 51)

I can have 0 or 1 2’s in the divisor. I can have 0 or 1 5’s in the divisor.
τ(10) = 2 · 2 = 4.

Proof of proposition. If d | n = pα1
1 · · · pαk

k , then d = pβ1

1 · · · pβk

k , βi ≥ 0, where

0 ≤ βi ≤ αi
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There are αi + 1 probabilities for βi.

Therefore,
τ(n) = (α1 + 1) · · · (αk + 1).

e.g.

τ(200) = τ(23 · 52)
= (3 + 1)(2 + 1)

= 12.

Note that
τ(23)τ(52) = (3 + 1)(2 + 1) = 12

Proposition 20. If m,n ∈ N s.t. gcd(m,n) = 1, then

τ(mn) = τ(m)τ(n)

⋆ Warning. Not true in general if m,n are not relatively prime.

e.g. τ(23) = 4

τ(2)τ(22) = (1 + 1)(2 + 1) = 6 ̸= 4 = τ(23)

Proof of proposition. Write

m = pα1
1 · · · pαk

k , αi ≥ 1

n = qβ1

1 · · · qβl

l , βj ≥ 1.

Since gcd(m,n) = 1,

{p1, · · · , pk} ∩ {q1, · · · , ql} = ∅

It then follows that

τ(mn) = τ(pα1
1 · · · pαk

k qβ1

1 · · · qβl

l ) = (α1+1) . . . (αk+1)(β1+1) . . . (βl+1) = τ(m)τ(n),

as required.

Definition. For n ∈ N,
σ(n) =

∑
d|n, d∈N

d

is the sum of the positive divisors of n.

Question. How to compute this (if we know the prime fact. of n)?
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Proposition 21. If n = pα1
1 · · · pαk

k , αi ≥ 1, pi distinct primes, then

σ(n) =

(
pα1+1
1 − 1

p1 − 1

)
·
(
pα2+1
2 − 1

p2 − 1

)
· · ·
(
pαk+1
k − 1

pk − 1

)
e.g.

σ(20) = σ(22 · 5)

=
∑

0≤α≤2
0≤β≤1

2α5β

= (
∑

0≤α≤2

2α)(
∑

0≤β≤1

5β)

= (1 + 2 + 22)(1 + 5)

Proof of proposition.

σ(n) = (1 + p1 + · · ·+ pα1
1 )(1 + p2 + · · ·+ pα2

2 ) · · · (1 + pk + · · ·+ pαk

k )

=

(
pα1+1
1 − 1

p1 − 1

)
·
(
pα2+1
2 − 1

p2 − 1

)
· · ·
(
pαk+1
k − 1

pk − 1

)
.

e.g.

σ(20) = σ(22 · 51)

= (
23 − 1

2− 1
)(
52 − 1

5− 1
)

= 7 · (24
4
)

= 7 · 6
= 42.

Lemma.For r ̸= 1,

a+ ar + ar2 + · · ·+ ark =
a(rk+1 − 1)

r − 1
.

Proof. Let S = a+ ar + ar2 + · · ·+ ark.

Then rS = ar + ar2 + · · · ark + ark+1.

rS − S = ark+1 − a

(r − 1)S = a(rk+1 − 1)

r ̸=1
=⇒ S =

a(rk+1 − 1)

r − 1
.
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Proposition 22. If m,n ∈ N s.t. gcd(m,n) = 1, then

σ(mn) = σ(m)σ(n).

Proof. Suppose

m = pα1
1 · · · pαk

k ,

n = qβ1

1 · · · qβl

l ,

where αi ≥ 1, βi ≥ 1, pi, qj distinct primes.

Since gcd(m,n) = 1,

{p1, · · · , pk} ∩ {q1, · · · , ql} = ∅

By the previous prop,

σ(mn) = σ(pα1
1 · · · pαk

k qβ1

1 · · · qβl

l )

=

(
pα1+1
1 − 1

p1 − 1

)
· · ·

(
pαk+1
k − 1

pk − 1

)(
qβ1+1
1 − 1

q1 − 1

)
· · ·

(
qβk+1
l − 1

ql − 1

)
= σ(m)σ(n).

Again, note that the proposition is false if m and n are not necessarily relatively
prime. For example, σ(22) = 7 while σ(2) = 3. Therefore, σ(22) ̸= σ(2)σ(2).

2.20 Nov 7, Special functions Continued

Problem. (Gauss’ Lemma) For n ∈ N,

n =
∑
d|n

φ(d).

Solution. Consider the numbers

1

n
,
2

n
,
3

n
, · · · , n

n

This consists of n number.

Reduce each of the number to lowest fractions. Then for each d, we have the
φ(d) numbers of the form i

d , where gcd(i, d) = 1.
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For each d | n, we have φ(d) such numbers in

1

n
,
2

n
, · · · , n

n
.

Therefore,

n =
∑
d|n

φ(d)

e.g. Let n = 6,
1

6
,
2

6
,
3

6
,
4

6
,
5

6
,
6

6
.

In reduced form, this collection of 6 numbers is

1

6
,
1

3
,
1

2
,
2

3
,
5

6
,
1

1
.

If 1 | 6, we have 1 = φ(1) numbers.

If 2 | 6, we have 1 = φ(2) numbers.

For 3 | 6, we have the numbers 1
3 and 2

3 , so we have 2 = φ(3) numbers.

For 6 | 6, we have the numbers 1
6 and 5

6 , so we have 2 = φ(6) numbers.

From this, we obtain

6 = 1 + 1 + 2 + 2

= φ(1) + φ(2) + φ(3) + φ(6)

=
∑
d|6

φ(d)

Problem. Find a formula for ∑
1≤a≤n

gcd(a,n)=1

a,

when n > 1.

Solution. The claim is that ∑
1≤a≤n

gcd(a,n)=1

a =
nφ(n)

2
.

Proof. If n = 2, then ∑
1≤a≤2

gcd(a,2)=1

a = 1 =
2φ(2)

2
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Order the numbers 1 ≤ a ≤ n s.t. gcd(a, n) = 1 as follows:

a1 < · · · < aφ(n).

If gcd(a, n) = 1, then gcd(n− a, n) = 1.

If you take a1, then n− a1 = aφ(n).

Similarly,

(∗)


a2 + aφ(n)−1 = n

...

aφ(n) + a1 = n.

You should note that we never have ai = n − ai if n ≥ 3, but this does not
matter that much.

(Why? Otherwise, 2ai = n
gcd(ai,n)=1

=⇒ ai = 1 =⇒ n = 2.)

Summing (∗), we obtain

2
∑

1≤a≤n
gcd(a,n)=1

a = nφ(n)

=⇒
∑

1≤a≤n
gcd(a,n)=1

a =
nφ(n)

2

Def. An arithmetic function is any function

f : N → R (or C).

Def. A multiplicative function is an arithmetic function f : N → C s.t. for any
m,n ∈ N satisfying gcd(m,n) = 1,

f(mn) = f(m)f(n).

Examples of multiplicative function:

• φ Euler’s totient function

• τ number of divisors

• σ sum of divisors

• id: N → N ⊂ C, n 7→ n, id(mn) = id(m)id(n)
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Note that
τ(n) =

∑
d|n

1

and
σ(n) =

∑
d|n

d.

Proposition 23. If f : N → C is multiplicative, then

g(n) :=
∑
d|n

f(d)

is also multiplicative.

Proof. Suppose m,n ∈ N s.t. gcd(m,n) = 1. We want to show that

g(mn) = g(m)g(n).

By definition,

g(mn) =
∑
d|mn

f(d).

Since gcd(m,n) = 1, d = gcd(m, d) gcd(n, d).

From this, it can be seen that∑
d|mn

f(d) =
∑
d1|m
d2|n

f(d1d2). (1)

Since gcd(m,n) = 1, and d1 | m, d2 | n,

gcd(d1, d2) = 1.

Since f is multiplicative,

f(d1d2) = f(d1)f(d2).
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Therefore from (1),

g(mn) =
∑
d1|m
d2|n

f(d1)f(d2)

=
∑
d1|m

∑
d2|n

f(d1)f(d2)

=
∑
d1|m

(
f(d1)

∑
d2|n

f(d2)

)

=

(∑
d1|m

f(d1)

)(∑
d2|n

f(d2)

)
= g(m)g(n)

Recall that ∫
R

∫
R
f(x)g(y) dx dy

=

∫
R
g(y)

(∫
R
f(x) dx

)
dy

=

(∫
R
g(y) dy

)(∫
R
f(x) dx

)
.

Also

N∑
j=1

ajI = a1I + a2I + · · ·+ aNI

= (a1 + · · ·+ aN )I

= I

N∑
j=1

aj .

Suppose that we have an arithmetic function f : N → C.

Then define the function
g(n) :=

∑
d|n

f(d).

g has a lot information about f .

Question. Can we recover f knowing g(n) for all n ∈ N?

Answer. Yes! Möbius Inversion Formula.
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2.21 Nov 9

Recall from last class that given an arithmetic function

f : N → C

I defined g : N → C given by

g (n) :=
∑
d|n

f (d)

Question. g contains a lot of information about f . Can we recover f given g?

g(1) =
∑
d|1

f(d) = f(1)

g(2) =
∑
d|2

f(d) = f(1) + f(2) = g(1) + f(2)

=⇒ f(2) = g(2)− g(1)

g(3) =
∑
d|3

f(d) = f(1) + f(3) = g(1) + f(3)

=⇒ f(3) = g(3)− g(1)

g(4) =
∑
d|4

f(d) = f(1) + f(2) + f(4)

= g(1) + (g(2)− g(1)) + f(4)

=⇒ f(4) = g(4)− g(2).

Can we recover f(n) for every n ∈ N if we know g(n) for every n ∈ N?

Answer: Yes.

2.21.1 Möbius Inversion

Def. The möbius function µ : N → R is defined as follows:

µ(n) =

{
1 if n = 1

(−1)r if n = p1 · · · pr, pi distinct primes
0 otherwise

Proposition 24. µ is a multiplicative function, i.e. ifm,n ∈ N s.t. gcd(m,n) =
1, then

µ(mn) = µ(m)µ(n).
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Proof. Clearly, ifm or n = 1, then this follows from µ(1) = 1. If there is a prime
p s.t. p2 | m or p2 | n, then µ(m) = 0 or µ(n) = 0, respectively. Furthermore,
p2 | mn =⇒ µ(mn) = 0 as well.

It remains to consider the case where m = p1 · · · pr, n = q1 · · · ql, pi distinct, qj
distinct.

Since gcd(m,n) = 1,

{p1, · · · , pr} ∩ {q1, · · · , ql} = ∅

Therefore,

µ(mn) = µ(p1 · · · prq1 · · · ql) = (−1)r+l

= (−1)r(−1)l

= µ(p1 · · · pr)µ(q1 · · · ql)
= µ(m)µ(n)

Proposition 25. For every n ∈ N∑
d|n

µ(d) =

{
1 if n = 1
0 if n > 1

Proof. Recall from last class that since µ is multiplicative, so is

e(n) :=
∑
d|n

µ(d)

Therefore, if n = pα1
1 · · · pαk

k , αi ≥ 1, pi distinct primes, then

e(n) = e(pα1
1 · · · pαk

k ) = e(pα1
1 )e(pα2

2 ) · · · e(pαk

k ).

If n = 1, then

e(1) =
∑
d|1

µ(d) = µ(1) = 1.

If suffices to show that if n = pα, α ≥ 1, p prime, then

e(pα) = 0

Computing this, we have

e(pα) =
∑
d|pα

µ(d) = µ(1) + µ(p) + µ(p2) + · · ·+ µ(pα)︸ ︷︷ ︸
=0

= 1 + (−1)1 = 0
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Def. For n ∈ N,

•

e(n) =

{
1 if n = 1
0 if n ̸= 1

•
I(n) = 1.

Theorem 28 (Möbius Inversion Formula). If f : N → C and for every n ∈ N

g(n) :=
∑
d|n

f(d),

then
f(n) =

∑
d|n

µ(
n

d
)g(d).

The converse is also true: if f is given as above in terms of g, then g satisfies
the above formula in terms of f .

Note that ∑
d|n

µ(
n

d
)g(d) =

∑
d|n

µ(d)g(
n

d
).

Indeed, d ranges over all divisors of n if and only if n/d ranges over all divisors
of n (as d ranges over all divisors of n).

Def. (Dirichlet Convolution)

Given f, g : N → C,

(f ∗ g)(n) :=
∑
d|n

f(d)g(
n

d
)

=
∑

d1d2=n
d1,d2∈N

f(d1)g(d2)

= (g ∗ f)(n)

In the language of Dirichlet convolutions,∑
d|n

f(d) =
∑
d|n

f(d)I(
n

d
) = f ∗ I

The statement that ∑
d|n

µ(d) = e(n)

is equivalent to µ ∗ I = e.

Mobius Inversion is equivalent to g = f ∗ I ⇐⇒ f = µ ∗ g.
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Proposition 26. Given f, g : N → C,

(1)f ∗ g = g ∗ f
(2)(f ∗ g) ∗ h = f ∗ (g ∗ h). (Associativity)

(3)f ∗ e = f

Proof. (1) is clear.

For (2), note that

((f ∗ g) ∗ h)(n) =
∑

d1d2=n
d1d2∈N

(f ∗ g)(d1)h(d2)

=
∑

uvd2=n
u,v,d2∈N

f(u)g(v)h(d2)

You can similarly show that

(f ∗ (g ∗ h))(n) =
∑

u,v,d2∈N
uvd2=n

f(u)g(v)h(d2)

For (3), note that

(f ∗ e)(n) =
∑
d|n

f(
n

d
)e(d) = f(n)

Proof of Möbius Inversion using this formalism.

g(n) :=
∑
d|n

f(d) = (f ∗ I)(n) ⇐⇒ g = I ∗ f

We also know that µ ∗ I = e. Therefore, using the previous proposition,

µ ∗ g = µ ∗ (I ∗ f) = (µ ∗ I) ∗ f = e ∗ f = f,

that is,

f(n) =
∑
d|n

µ(
n

d
)g(d).

Conversely, if this is satisfied, f = µ ∗ g, and so convolving with I on both sides
gives

I ∗ f = I ∗ (µ ∗ g) = (I ∗ µ) ∗ g = e ∗ g = g,

that is,

g(n) :=
∑
d|n

f(d).
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Remark. If A∗ := {f : N → C | f(1) ̸= 0}, Then (A∗, ∗) is a group.

Problem. Show that for every n ∈ N,

1 =
∑
d|n

µ(
n

d
)τ(d).

Solution. By definition,

τ(n) =
∑
d|n

1.

By Möbius inversion,

1 =
∑
d|n

µ(
n

d
)τ(d)

Problem. Show that

φ(n) = n
∑
d|n

µ(d)

d
.

Solution. Recall from Gauss’ Lemma that

n =
∑
d|n

φ(d).

Applying Möbius inversion, we obtain

φ(n) =
∑
d|n

µ(d)
n

d

= n
∑
d|n

µ(d)

d
,

as required.

One could use this to show that

φ(n) = n(1− 1

p1
) · · · (1− 1

pk
)

if n = pα1
1 · · · pαk

k , αi ≥ 1, pi distinct. This would give a non-probabilistic proof
of this formula that we saw earlier in the course.

Problem.

n =
∑
d|n

µ(
n

d
)σ(d).

σ(n) =
∑
d|n

d.
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2.22 Nov 14

2.22.1 Möbius Inversion continued

Recall that Gauss’ Lemma states that for every n ∈ N,

id(n) = n =
∑
d|n

φ(d).

By Möbius inversion,

φ(n) =
∑
d|n

id(
n

d
)µ(d)

=
∑
d|n

n

d
µ(d)

= n
∑
d|n

µ(d)

d

µ(d)
d is a multiplicative function, and so

φ(n) = n
∑
d|n

µ(d)

d

is a multiplicative function. This is a new proof that φ is multiplicative.

I want to give a new proof that if n < pα1
1 · · · pαk

k , αi ≥ 1, pi distinct primes,
then

φ(n) = n
(
1− 1

p1

)
· · ·
(
1− 1

pk

)
The idea of the proof is the same idea I used to show that∑

d|n

µ(d) =

{
1 if n = 1
0 if n > 1

.

Since φ is multiplicative,

φ(pα1
1 · · ·φαk

k ) = φ(pα1
1 ) · · ·φ(pαk

k )

For each prime p and α ≥ 1 to

φ(pα) = pα

µ(1)1
+
µ(p)

p
+
µ(p2)

p2
+ · · ·+ µ(pα)

pα︸ ︷︷ ︸
=0 by def. of µ


= pα

(
1− 1

p

)
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Therefore,

φ(pα1
1 · · · pαk

k ) = pα1
1

(
1− 1

p1

)
pα2
2

(
1− 1

p2

)
· · · pαk

k

(
1− 1

pk

)
= pα1

1 · · · pαk

k

(
1− 1

p1

)
· · ·
(
1− 1

pk

)
= n

(
1− 1

p1

)
· · ·
(
1− 1

pk

)
.

Problem. Suppose f : N → C (or R) s.t. for every n ∈ N, f(n) ̸= 0 and is
multiplicative. Then find a formula for

g(n) :=
∑
d|n

µ(d)

f(d)

Since µ, f are multiplicative, so is µ
f (note that f never vanishes).

If n = 1, then we have

g(1) =
∑
d|1

µ(d)

f(d)
=
µ(1)

f(1)
=

1

f(1)
.

For n ≥ 2, write

n = pα1
1 · · · pαk

k , αi ≥ 1, pi distinct primes.

Then

g(pα1
1 · · · pαk

k ) = g(pα1
1 ) · · · g(pαk

k )

=

∑
d|pα1

1

µ(d)

f(d)

 · · ·

∑
d|pαk

k

µ(d)

f(d)



=

µ(1)f(1)
+
µ(p1)

f(p1)
+
µ(p21)

f(p21)
+ · · ·+ µ(pα1

1 )

f(pα1
1 )︸ ︷︷ ︸

=0



· · ·

µ(1)f(1)
+
µ(pk)

f(pk)
+
µ(p2k)

f(p2k)
+ · · ·+

µ(pαk

k )

f(pαk

k )︸ ︷︷ ︸
=0


=

(
1

f(1)
− 1

f(p1)

)
· · ·
(

1

f(1)
− 1

f(pk)

)
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Note that if you expand

φ(n) = n

(
1− 1

p1

)
· · ·
(
1− 1

pk

)

= n

1−
(

1

p1
+ · · ·+ 1

pk

)
+
∑
i1 ̸=i2

1

pi1pi2
−

∑
i1,i2,i3 distinct

1

pi1pi2pi3


This could be interpreted using the principle of inclusion-exclusion. In fact,
Mobius inversion may be put within a general framework that specialize to
both Mobius inversion and the principle of inclusion-exclusion.

2.22.2 Multiplicative version of Möbius inversion

Theorem 29. Suppose f : N → N and let

g(n) =
∏
d|n

f(d)

Then
f(n) =

∏
d|n

g(d)µ(
n
d )

Proof. Take logarithms to reduce to

log g(n) =
∑
d|n

log f(d)

Möbius inversion
=⇒ log f(n) =

∑
d|n

µ(
n

d
) log g(d)

=
∑
d|n

log g(d)µ(
n
d )

= log
∏
d|n

g(d)µ(
n
d )

exp.
=⇒ f(n) =

∏
d|n

g(d)µ(
n
d ).

Problem. Suppose a1, a2, · · · is a sequence of natural numbers s.t.

gcd(am, an) = agcd(m,n).

Show that there is a unique seq of natural number b1, b2, · · · s.t. for every n ∈ N,

an =
∏
d|n

bd.
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2.22.3 Quadratic reciprocity

Recall the following theorem.

Theorem 30. Suppose p is an odd prime. Then x2 ≡ −1 (mod p) has a solution
if and only if p ≡ 1 (mod 4)

Question. Suppose a ∈ Z and p is a prime. When does

x2 ≡ a (mod p)

have a solution?

Def. (Legendre Symbol)

Suppose a ∈ Z, p prime (almost always odd).

Then (
a

p

)
=

{ 0 if p | a
−1 if x2 ≡ a (mod p) has no solution
1 otherwise

Def. a ∈ Z is a quadratic residue mod p if

x2 ≡ a (mod p)

has a solution. Otherwise, a is a quadratic non-residue.

Reformulation of previous theorem: If p is an odd prime, then(
−1

p

)
= (−1)

p−1
2 .

Indeed, if p ≡ 1 (mod 4), then

4
∣∣∣ p− 1 =⇒ 2

∣∣∣∣ p− 1

2
=⇒ (−1)

p−1
2 = 1.

If p ≡ 3 (mod 4) then p− 1 = 4k + 2 for some k ∈ Z =⇒ p−1
2 = 2k + 1 is odd

=⇒ (−1)
p−1
2 = −1.

Theorem 31. For p odd prime,(
a

p

)
≡ a

p−1
2 (mod p).

If p | a, then by def, (
a

p

)
= 0.
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Also
p
∣∣∣ a p−1

2 .

If p ∤ a, then by Fermat’s Little Theorem,

ap−1 ≡ 1 (mod p)

=⇒ p | ap−1 − 1 = (a
p−1
2 − 1)(a

p−1
2 + 1)

=⇒ p | (a
p−1
2 − 1) or p | (a

p−1
2 + 1)

=⇒ a
p−1
2 ≡ ±1 (mod p)

To prove the above theorem, it suffices to show that if p ∤ a, then

a
p−1
2 ≡ 1 (mod p) ⇐⇒ a is a quadratic residue.

Proof of (⇐). If x2 ≡ a (mod p) has a solution, then

a
p−1
2 ≡ (x2)

p−1
2 = xp−1 FLT≡ 1 (mod p).

Note that since p ∤ a and x2 ≡ a mod p, p ∤ x as well and so FLT may be
applied.

2.23 Nov 16

2.23.1 Continuation of Quadratic residues

Remarks on previous material:

1. Möbius Inversion formula is a number theoretic version of the fundamental
theorem of calculus.

2. Möbius inversion was generalized beyond number theory in the 60’s, Gian
Carlo Rota wrote some papers on Möbius inversion on posets.

3. Recall the prime number theorem:

π(x) ∼ x

log x
.

It is known that this is equivalent

lim
N→∞

∑
n≤N µ(n)

N
= 0.

4. Riemann hypothesis (one of the most important conjectures yet to be
proved) is equivalent to showing that for any ϵ > 0,

lim
N→∞

1

N
1
2+ϵ

∑
n≤N

µ(n)

is bounded.
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Quadratic residues

Recall the def of the Legendre symol. If p is a prime, a ∈ Z, then

(
a

p

)
:=

{ 0 if p | a
−1 if x2 ≡ a (mod p) has no solution
1 otherwise

Theorem 32 (Euler’s criterion). If p is an odd prime, then(
a

p

)
≡ a

p−1
2 (mod p)

Proposition 27. If p odd prime and p ∤ a, then

a
p−1
2 ≡ 1 (mod p) ⇐⇒ x2 ≡ a (mod p) has a solution

I showed that if x2 ≡ a (mod p) has a solution, then

a
p−1
2 ≡ 1 (mod p).

Suppose now that x2 ≡ a (mod p) has no solution. We must show that

a
p−1
2 ≡ −1 (mod p).

Consider the set
S := {1, 2, 3, · · · , p− 1}.

For each i ∈ S, find j ∈ S s.t.

ij ≡ a (mod p).

j must be unique. If you choose j, then by uniqueness again, it will be paired
with i.

Since a is not a square mod p, j ̸= i. This gives us a pairing between the
numbers

1, 2, · · · , p− 1.

We have a total of p−1
2 pairs s.t. for every pair {i, j}, ij ≡ a (mod p).

Therefore,

(p− 1)! ≡ a
p−1
2 (mod p).

By Wilson’s Theorem, the left hand side is ≡ −1 (mod p).

Theorem 33. a, b ∈ Z, p odd prime, we have the following properties:
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1. (
ab

p

)
=

(
a

p

)(
b

p

)
2. (

−1

p

)
= (−1)

p−1
2

3. The product of a nonzero (mod p) quadratic residue and a quadratic non-
residue is a quadratic non-residue.

4. The product of two quadratic non-residues is a quadratic residue.

Proof of (1). By Euler’s criterion,(
ab

p

)
≡ (ab)

p−1
2 = a

p−1
2 · b

p−1
2 ≡

(
a

p

)(
b

p

)
(mod p)

=⇒ p

∣∣∣∣ (abp
)
−
(
a

p

)
−
(
b

p

)
Since

−1 ≤
(
ab

p

)
,

(
a

p

)(
b

p

)
≤ 1

=⇒
∣∣∣∣(abp

)
−
(
a

p

)(
b

p

)∣∣∣∣ ≤ 2.

p odd =⇒ p ≥ 3.

If (
ab

p

)
−
(
a

p

)(
b

p

)
̸= 0,

then

3 ≤ p ≤
∣∣∣∣(abp

)
−
(
a

p

)(
b

p

)∣∣∣∣ ≤ 2

Contradiction. Therefore, (
ab

p

)
=

(
a

p

)(
b

p

)
.

e.g. Consider mod 5.
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The possible squares mod 5 are

02 ≡ 0 (mod 5)

12 ≡ 1 (mod 5)

22 ≡ 4 (mod 5)

32 ≡ 4 (mod 5)

42 ≡ 1 (mod 5)

0, 1, 4 are the only quadratic residues mod 5.

2, 3 are the quadratic non-residues.

(
2 · 3
5

)
= 1.(

2

3

)
,

(
3

5

)
= −1 =⇒

(
2

5

)(
3

5

)
= 1.(

4 · 2
5

)
=

(
8

5

)
=

(
3

5

)
= −1(

4

5

)
= 1,

(
2

5

)
= −1.

Proposition 28. If a ≡ b (mod p), then(
a

p

)
=

(
b

p

)
.

e.g. (
2

5

)
= −1, and 2

5−1
2 = 22 = 4 ≡ −1 (mod 5).

So (
2

5

)
≡ 2

5−1
2 (mod 5),

as predicted by Euler’s criterion.

e.g. (
1002

5

)
=

(
2

5

)
= −1.

e.g. (
1004

5

)
=

(
4

5

)
=

(
−1

5

)
= (−1)

5−1
2 = 1.

e.g. (
57

7

)
=

(
1

7

)
= 1.

e.g. (
55

7

)
=

(
−1

7

)
= (−1)

7−1
2 = −1.
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2.23.2 Quadratic Reciprocity of Gauss

If you have two odd prime p, q, quadratic reciprocity will tell us that studying

x2 ≡ p (mod q)

is intimately related to studying

x2 ≡ q (mod p)

Theorem 34. If p, q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 .(
⇐⇒ for p, q odd primes,

(
p

q

)
= (−1)

p−1
2 · q−1

2

(
q

p

))
.

e.g. (
3

17

)
= (−1)

3−1
2 · 17−1

2

(
17

3

)
=

(
17

3

)
=

(
2

3

)
=

(
−1

3

)
= (−1)

3−1
2

= −1.

e.g. (
15

19

)
=

(
3

19

)(
5

19

)
= (−1)

3−1
2 · 19−1

2

(
19

3

)
(−1)

5−1
2 · 19−1

2

(
19

5

)
= −

(
19

3

)(
19

5

)
= −

(
1

3

)(
4

5

)
= −1.

This computation demonstrates the general procedure. Of course, we could also
do the computation as follows without using quadratic reciprocity:(

15

19

)
=

(
−4

19

)
=

(
−1

19

)(
4

19

)
= (−1)

19−1
2 = −1.
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2.24 Nov 18 (
17

19

)
=

(
−2

19

)
=

(
−1

19

)(
2

19

)
= (−1)

19−1
2

(
2

19

)
= −

(
2

19

)
Proposition 29. If p is an odd prime, then(

2

p

)
= (−1)

p2−1
8

( If x is odd, then 8 | x2 − 1 )

Continuing with the example, we have(
17

19

)
= −

(
2

19

)
= (−1) · (−1)

192−1
8

Note that

192 − 1 = (19− 1) (19 + 1)

= 18 · 20
= 23 · 32 · 5

and so

192 − 1

8
= 45

(−1) · (−1)
192−1

8 = (−1) · (−1) = 1

Another argument: (
17

19

)
= (−1)

19−1
2 · 17−1

2

(
19

17

)
=

(
19

17

)
=

(
2

17

)
By applying the proposition, we obtain(

2

17

)
= (−1)

172

8 = (−1)
(17−1)(17+1)

8 = 1.
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We could also proceed by noting that(
2

17

)
=

(
−15

17

)
=

(
−1

17

)(
3

17

)(
5

17

)
= . . .

Problem. Find all odd primes p such that

x2 ≡ −3 (mod p)

has a solution.

Solution. If p = 3, then x2 ≡ −3 ≡ 0 (mod 3) has x = 0 as a solution. So let’s
assume that p ̸= 3. Then we want to find all odd p ̸= 3 such that(

−3

p

)
= 1

(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2

(
3

p

)
= (−1)

p−1
2

(p
3

)
(−1)

3−1
2 · p−1

2

= (−1)
p−1
2 + p−1

2

(p
3

)
=
(p
3

)
For p ̸= 3, (p

3

)
= 1 ⇔ p ≡ 1 (mod 3)

Answer: p = 3 or p ≡ 1 (mod 3).

Proposition 30. There are infinitely many primes p ≡ 1 (mod 4), i.e. 1, 5, 9, · · ·
has infinitely many primes.

Proof. Assume to the contrary that there are finitely many such primes

p1, · · · , pk.

Note that there is at least one such prime, 5, for example. Consider

N := (2p1 · · · pk)2 + 1 > 1

There is an odd prime p | N ,

p | N =⇒ (2p1 · · · pk)2 + 1 ≡ 0 (mod p)

=⇒ x2 ≡ −1 (mod p) has a solution

=⇒
(
−1

p

)
= 1 =⇒ p ≡ 1 (mod 4).

121



In the final implication, I used that p must be odd. It is also clear that

p /∈ {p1, · · · , pk}.

Contradiction.

Theorem 35. Dirichlet If n ∈ N and a ∈ Z such that

gcd (n, a) = 1,

then there are ∞ many primes p such that

p ≡ a (mod n)

In fact, asymptotically,

#{p prime s.t p ≡ a (mod n), p ⩽ x} ∼ x

φ (n) log x

Problem. Suppose p is a prime such that

p = x2 + xy + y2

for some x, y ∈ Z.

Then p = 3 or p ≡ 1 (mod 3).

Solution. It is easy to see that p = 2 is not of this form.

On the other hand,

3 = 12 + 1 · 1 + 12 x = 1, y = 1

=⇒ 3 is of this form.

Let’s assume that p is an odd prime ̸= 3 and

p = x2 + xy + y2 for some x, y ∈ Z (1)

(1) implies that

4p = 4x2 + 4xy + 4y2

=
(
(2x)

2
+ 2 · (2x) y + y2

)
+ 3y2

= (2x+ y)
2
+ 3y2

=⇒ (2x+ y)
2 ≡ −3y2 (mod p) (2)

If p | y, then y ≡ 0 (mod p), and so

(2x)
2 ≡ (2x+ y)

2

≡ −3y2

≡ 0 (mod p)

=⇒ p | 4x2

=⇒ p | x
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We then obtain

p = x2 + xy + y2 ≡ 0 (mod p2)

=⇒ p2 | p

a contradiction. Therefore, p ∤ y, and so there is a z such that

yz ≡ 1 (mod p).

Consequently, (2) implies that

z2 (2x+ y)
2 ≡ −3y2z2

≡ −3 (mod p)

This means that −3 is a quadratic residue modulo p, i.e.

p ̸=3
=⇒

(
−3

p

)
= 1

=⇒ p ≡ 1 (mod 3).

The final conclusion follows from two problems ago.

Problem. Show that if n ∈ N, then no prime divisor of 2n+1 is ≡ −1 (mod 8).

Solution. Suppose n is even, and p is a prime such that p | 2n + 1. Then

−1 ≡
(
2

n
2

)2
(mod p)

=⇒ 1 =

(
−1

p

)
= (−1)

p−1
2 =⇒ p ≡ 1 (mod 4)

In particular,
p ̸≡ −1 (mod 8).

Assume now that n is odd. In this case

n+ 1

2
∈ Z,

and so (
2

n+1
2

)2
= 2n+1

≡ −2 (mod p).

Therefore, (
−2

p

)
= 1
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However, (
−2

p

)
=

(
−1

p

)(
2

p

)
= (−1)

p−1
2 + p2−1

8

If p ≡ −1 (mod 8) , then

p = 8k − 1 for some k ∈ Z

=⇒ p2 − 1

8
=

(
(8k − 1)

2 − 1
)

8

=
642k2 − 16k

8
is even.

On the other hand,

p− 1

2
=

(8k − 1)− 1

2
= 4k − 1 is odd.

These computations imply that if p ≡ −1 mod 8, then
(

−2
p

)
̸= 1. Therefore,

again, we cannot have p ≡ −1 mod 8.

The conclusion follows.

Theorem 36. If a > 1 is a natural number that is not a square, then(
a

p

)
= −1

for ∞ many primes p.

Problem. If f ∈ Z [X] of degree 2 such that for any prime p, there is n ∈ N
such that p | f (n), then all roots of f are rational.

2.25 Nov 21

Proposition 31. If p is an odd prime, then(
2

p

)
= (−1)

p2−1
8

Lemma. (Gauss) Suppose p is an odd prime and a ∈ Z, p ∤ a. Consider the
numbers

1, 2, 3, · · · , p− 1

2
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and

a, 2a, 3a, · · · , a
(
p− 1

2

)
.

Reduce these numbers and choose remainders in

−p− 1

2
≤ r <

p− 1

2

after division by p.

Let l be the number of such remainders that are < 0. Then(
a

p

)
= (−1)l.

Reminder on division algorithm: Given x ∈ Z, then we may write

x = bp+ r, where 0 ≤ r < p, b ∈ Z

In stead, you can write

x = cp+ s, where − p− 1

2
≤ s <

p− 1

2

Proof of lemma. Let the remainder of ai mod p lying in −p−1
2 ≤ r < p−1

2 be
denoted by ai.

Then it is clear that

1 ≤ |ai| ≤
p− 1

2

for every i.

We claim that for every pair i ̸= j, |ai| ≠ |aj |.

Indeed, if |ai| = |aj |, then
ai = ±aj (∗)

Since
ai ≡ ai (mod p), aj ≡ aj (mod p),

(∗) =⇒ p | a(i− j) or p | a(i+ j)

Since p ∤ a, this means p | i − j or p | i + j. Since −p−1
2 ≤ i, j < p−1

2 , this is
only possible if

i = j.

Therefore, the |ai| are distinct.

Therefore,

(−1)la1 . . . a p−1
2

= |a1| · · · |a p−1
2
| = 1 · 2 · · · p− 1

2
=

(
p− 1

2

)
!, (1)
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and so

a1 . . . a p−1
2

= (−1)l
(
p− 1

2

)
!

On the other hand,

a1 · · · a p−1
2

≡ (a)(2a) · · ·
((

p− 1

2

)
a

)
≡ a

p−1
2

(
p− 1

2

)
! (mod p) (2)

Combining (1) and (2), we obtain

(−1)l
(
p− 1

2

)
! ≡ a

p−1
2

(
p− 1

2

)
! (mod p)

p∤( p−1
2 )!

=⇒ (−1)l ≡ a
p−1
2 (mod p), (3)

By Euler’s criterion, (
a

p

)
≡ a

p−1
2 (mod p).

Combining with (3), we obtain(
a

p

)
≡ (−1)l (mod p)

p odd
i.e. p≥3
=⇒

(
a

p

)
= (−1)l.

We can use this to prove the proposition that for odd p,(
2

p

)
= (−1)

p2−1
8 .

Indeed, if we consider

1, 2, 3, · · · , p− 1

2
,

it is easy to see that exactly for

1 ≤ j ≤
⌊p
4

⌋
,

we have 2j leaving positive remainder, and that for⌊p
4

⌋
< j ≤ p− 1

2
,
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2j has negative remainder in [−p−1
2 , p−1

2 )

=⇒ l =
p− 1

2
−
⌊p
4

⌋
.

It is an exercise to show that

p− 1

2
−
⌊p
4

⌋
≡ p2 − 1

8
mod 2,

from which the conclusion would follow.

Problem. Find all odd primes p s.t.(
7

p

)
= 1.

Solution. Clearly, if p = 7, then this is not satisfied. Therefore, assume p ̸= 7.

Applying quadratic reciprocity,(
7

p

)
= (−1)

7−1
2 · p−1

2

(p
7

)
= (−1)

p−1
2

(p
7

)
.

There are two main cases:

1. (−1)
p−1
2 = −1 and

(
p
7

)
= −1.

2. (−1)
p−1
2 = 1 and

(
p
7

)
= 1.

The nonzero quadratic residues mod 7 are

12 ≡ 1 (mod 7)

22 ≡ 4 (mod 7)

32 ≡ 2 (mod 7)

42 ≡ 32 ≡ 2 (mod 7)

...

=⇒ nonzero quadratic residues: 1, 2, 4, and quadratic non-residues: 3, 5, 6.

1. {
p ≡ 3 (mod 4)

p ≡ 3 (mod 7)
=⇒ p ≡ 3 (mod 28){

p ≡ 3 (mod 4)

p ≡ 5 (mod 7)
=⇒ p ≡ 19 (mod 28){

p ≡ 3 (mod 4)

p ≡ 6 (mod 7)
=⇒ p ≡ 27 (mod 28)
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2. {
p ≡ 1 (mod 4)

p ≡ 1 (mod 7)
=⇒ p ≡ 1 (mod 28){

p ≡ 1 (mod 4)

p ≡ 2 (mod 7)
=⇒ p ≡ 9 (mod 28){

p ≡ 1 (mod 4)

p ≡ 4 (mod 7)
=⇒ p ≡ 25 (mod 28)

Therefore we have
p ≡ 1, 3, 9, 19, 25, 27 (mod 28).

Problem. If p = x2 − 7y2 is a prime (x, y ∈ Z), what can say about p?

Solution. Let us assume for now that p ̸= 7. Reducing mod p, we must have

x2 ≡ 7y2 (mod p).

p ∤ y; otherwise p | x, y =⇒ p2 | x2 − 7y2 = p which is a contradiction.

Therefore, there is a z s.t.
zy ≡ 1 (mod p).

Multiplying by z2, we obtain

(xz)2 = z2x2 ≡ 7y2z2 = 7(yz)2 ≡ 7 (mod p)

p ̸=7
=⇒

(
7

p

)
= 1 =⇒ p ≡ 1, 3, 9, 19, 25, 27 (mod 28).

What about p = 7? Can we write 7 = x2 − 7y2 for some x, y ∈ Z?

No. Indeed, if this were possible, then

7(1 + y2) = x2

=⇒ 7 | x
=⇒ x = 7x1 for some x1 ∈ Z.
=⇒ 7(1 + y2) = (7x1)

2 = 49x21

=⇒ 1 + y2 = 7x21 ≡ 0 (mod 7)

=⇒ 1 =

(
−1

7

)
= (−1)

7−1
2 = −1

Thus there is a contradiction.
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3 Final Review

3.1 Nov 29

Induction ⇐ Well ordering principle

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

Combinatorial identities.(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
(Pascal’s identity)

(
n

k

)
=
n

k

(
n− 1

k − 1

)
Example.

∑n
k=0 k(k − 1)(k − 2)

(
n
k

)
= n(n− 1)(n− 2)2n−3(

n

k

)
=
n

k

(
n− 1

k − 1

)
=
n(n− 1)

k(k − 1)

(
n− 2

k − 2

)
=
n(n− 1)(n− 2)

k(k − 1)(k − 2)

(
n− 3

k − 3

)
We could also prove such identities by giving arguments.

Newton’s binomial theorem:

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k

In particular,

(1 + x)n =

n∑
k=0

(
n

k

)
xk

n(1 + x)n−1 =

n∑
k=0

k

(
n

k

)
xk−1

n(n− 1)(1 + x)n−2 =

n∑
k=0

k(k − 1)

(
n

k

)
xk−2

n(n− 1)(n− 2)(1 + x)n−3 =

n∑
k=0

k(k − 1)(k − 2)

(
n

k

)
xk−3

We briefly touched on Fermat’s Little Theorem.
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Theorem 37. If p is a prime, a ∈ Z, s.t. p ∤ a, then

p | ap−1 − 1 , i.e. ap−1 ≡ 1 (mod p)

In general, ap ≡ a (mod p) for any a ∈ Z

The first used that if p is a prime, then

p

∣∣∣∣ (pk
)

for any 1 ≤ k ≤ p− 1

We discussed gcd’s.

The foundation was

Theorem 38 (Bézout). If a, b ∈ Z, at least one of which is nonzero, then

ax+ by = gcd(a, b)

has integral solutions.

In particular,

ax+ by = 1 has integer integral solutions ⇐⇒ gcd(a, b) = 1.

In relation to gcd and lcm, we talked about p-adic valuations.

If

{
m = pα1

1 · · · pαk

k , αi ≥ 0

n = pβ1

1 · · · pβk

k , βi ≥ 0
, then gcd(m,n) = p

min{α1,β1}
1 · · · pmin{αk,βk}

k .

We also had the Euclidean algorithm for computing gcds.

This method was useful for solving equations of the form

ax+ by = c.

Theorem 39. If (x0, y0) ∈ Z× Z. such that

ax0 + by0 = c,

Then all solutions are given by{
x = x0 − b

gcd(a,b) t

y = y0 +
a

gcd(a,b) t
, t ∈ Z

Theorem 40. For a, b ∈ N,

lcm(a, b) =
ab

gcd(a, b)

Problem. If a, b ∈ N s.t. gcd(a, b) = 1, then show that

lcm(a2 + b3, b5 + a2b+ b4) = b(a2 + b3)(b4 + a2 + b3).
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3.2 Nov 30

There is a class of problems had to do with the non-existence of integer solutions.
Problem. Show that

x2 + y2 = 4000z2 + 3 (*)

has no integer solutions.

Solution. Replace mod 4 to obtain

x2 + y2 ≡ 3 (mod 4) (**)

If an integer solution (x, y, z) to (∗) were to exist, then (∗∗) would have solutions.
Modulo 4, the quad residues are 0 and 1 and so

x2 + y2 ≡ 0, 1, or 2 (mod 4)

Proposition 32. If x is odd, then

x2 ≡ 1 (mod 8).

Proof. Write x = 2k + 1, k ∈ Z, then

x2 = 4k2 + 4k + 1

= 4k(k + 1) + 1

≡ 1 (mod 8)

Problem. Are there odd integers x, y, z, w, u, v s.t.

x2 + y2 + z2 + w2 + u2 = 80!v2 + 7?

Solution. For any odd a ∈ Z, a2 ≡ 1 (mod 8).

If a solution exists, then

x2 + y2 + z2 + w2 + u2 ≡ 5 (mod 8),

while the right hand side is ≡ 7 (mod 8).

You could also do this modulo 4, since an odd number squared is also 1 modulo
4. The right hand side would be 3 modulo 4, while the left hand side would
be 1 modulo 4. (Sorry for forgetting that the numbers are odd when saying in
class that modulo 4 it would not have worked! A memory lapse.) If we only
had three variables on the left hand side, then modulo 4 would not have worked
while modulo 8 would have worked.
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Problem. Are there integer solutions to

x2 + y2 − 112z2 = 583?

Solution. Reducing modulo 11, we obtain

x2 + y2 ≡ 0 (mod 11)

=⇒ x2 ≡ −y2 (mod 11).

Claim. 11 ∤ y.

Assume to the contrary that 11 | y. Then

x2 ≡ −y2 ≡ 0 (mod 11)

=⇒ 11 | x, y
=⇒ 112 | x2 + y2 − 112z2 = 583 = 11 · 53,

a contradiction.

Therefore, there is a w ∈ Z s.t.

yw ≡ 1 (mod 11),

and so
(xw)2 ≡ −(yw)2 ≡ −1 (mod 11)

=⇒
(
−1

11

)
= 1

However, (
−1

11

)
= (−1)

11−1
2 = (−1)5 = −1

Problem. Let a1 = 5, a2 = 19 and an = an−1 + 2an−2 for n ≥ 2.

Show that for every n,
gcd(an, an+1) = 1.

Solution. We apply induction on n. If n = 1, then we have

gcd(a1, a2) = gcd(5, 19) = 1.

Now suppose
gcd(ak, ak+1) = 1.
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For n = k + 1, we have

gcd(ak+1, ak+2)

= gcd(ak+1, ak+1 + 2ak)

= gcd(ak+1, (ak+1 + 2ak)− ak+1)

= gcd(ak+1, 2ak)

= gcd(ak+1, ak),

which is 1 by the inductive hypothesis.

Problem. Suppose p and q are distinct prime numbers. Then show that
√
p+

√
q +

√
pq

is irrational.

We know that if
√
p is rational, then

√
p =

x

y
, x, y ∈ N

=⇒ py2 = x2

Apply vp to obtain

vp(p) + 2vp(y) = vp(py
2) = vp(x

2) = 2vp(x).

Solution. Assume to the contrary that

√
p+

√
q +

√
pq =

x

y
, x, y ∈ N

=⇒ √
q +

√
pq =

x

y
−√

p

square
=⇒ q + 2q

√
p+ pq =

x2

y2
− 2x

y

√
p+ p

=⇒ √
p =

x2

y2 + p− 1− pq

2q + 2x
y

∈ Q.

If you want to show divisibility, say

a | b,

then by unique prime factorization, it suffices to show that for all primes p,

vp(a) ≤ vp(b).

Recall that

vp(gcd(a1, · · · , an)) = min{vp(a1), · · · , vp(an)},
vp(lcm(a1, · · · , an)) = max{vp(a1), · · · , vp(an)}.
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Theorem 41. e and π are irrational.

We discussed counting primes.

Theorem 42 (PNT).

π(x) ∼ x

log x
as x→ +∞.

Theorem 43 (Euler). If n ∈ N, a ∈ Z, gcd(a, n) = 1, then

aφ(n) ≡ 1 (mod n).

Problems involving Euler’s theorem:

Find 21000 (mod 100) and 31000 (mod 100).

If you want to find
am (mod n),

write n = pα1
1 · · · pαk

k .

Then compute
am (mod pαi

i )

for each i.


am ≡ a1 (mod pα1

1 )
...

am ≡ ak (mod pαk

k )

φ(pα) = pα−1(p− 1)

φ(p2) = p(p− 1)

3.3 Dec 2

Problem. Find the last two digits of 71000.

Solution. We need to find 71000 (mod 100).

φ(100) = φ(2252) = φ(22)φ(52) = 2(2− 1)5(5− 1) = 40.

Since 1000 ≡ 0 (mod 40), 71000 ≡ 70 = 1 (mod 100).

Answer: 01
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If we want to use the CRT, we would have to compute

71000 ≡ 1 (mod 22)
71000 ≡ 1 (mod 52)

}
=⇒ 71000 ≡ 1 (mod 100),

where the last implication follows from the uniqueness part of the CRT.

Problem. Find the last two digits of 683.

Solution. We need to compute 683 (mod 100).

gcd(6, 100) = 2 ̸= 1, so we need to apply CRT.

683 ≡ 0 (mod 4).

It remains to find
683 (mod 25).

φ(25) = 5(5− 1) = 20 and 83 ≡ 3 mod 20.

Therefore,
683 ≡ 63 = 216 ≡ 16 mod 25.

Both 16 and 683 are solutions to the system{
x ≡ 0 mod 4

x ≡ 16 mod 25.

By the uniqueness part of the CRT, we obtain 683 ≡ 16 mod 100, and so the
last two digits of 683 are 16 in this order.

Theorem 44 (Lagrange). If G is a finite group of order |G|, then for every
g ∈ G,

g|G| = e.

Euler’s theorem = Lagrange’s theorem applied to (Z/nZ)×.

Special functions

1. φ

2. τ(n) =
∑
d|n 1

3. σ(n) =
∑
d|n d

4. µ
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Proposition 33. If n = pα1
1 · · · pαk

k , αi ≥ 1, pi distinct primes, then

τ(n) = (α1 + 1) · · · (αk + 1)

σ(n) = (1 + p1 + · · ·+ pα1
1 ) · · · (1 + pk + · · ·+ pαk

k )

=

(
pα1+1
1 − 1

p1 − 1

)
· · ·

(
pαk+1
k − 1

pk − 1

)

Problem. What is the sum of all divisors of 90 that are divisible by 3?

Solution. The prime factorization of 90 is 2 · 32 · 5. Therefore, the answer is

(1 + 2)(3 + 32)(1 + 5)

=3 · 12 · 6
=216.

You could write this as

∑
0≤α≤1
1≤α2≤2
0≤α3≤1

2α13α25α3 =

 ∑
0≤α1≤1

2α1

 ∑
1≤α2≤2

3α2

 ∑
0≤α1≤1

5α3


= (1 + 2)(3 + 32)(1 + 5)

= 216

µ(n) =

{
1 if n = 1

(−1)r if n = p1 · · · pr, pi distinct primes
0 otherwise

Möbius Inversion formula

Suppose f, g : N → R. Then for every n,

g(n) =
∑
d|n

f(d) ⇐⇒ f(n) =
∑
d|n

µ(
n

d
)g(d).

Problem. Show that
n =

∑
d|n

µ
(n
d

)
σ(d)

Solution. By Möbius inversion, this is equivalent to showing

σ(n) =
∑
d|n

d
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for every n.

This is true by definition.

Problem. Show that

φ(n) =
∑
d|n

µ(
n

d
)d = n

∑
d|n

µ(d)

d
.

Solution. By Gauss’ Lemma,

n =
∑
d|n

φ(d).

By Möbius inversion, we obtain the result.

Proposition 34. If f : N → R is multiplicative, i.e. ifm,n ∈ N s.t. gcd(m,n) =
1, then g : N → R given by

g(n) :=
∑
d|n

f(d)

is multiplicative.

Problem. Compute ∑
d|n

φ(d)

d2

in terms of the prime factorization n = pα1
1 · · · pαk

k .

Solution. f(1) = φ(1)
12 = 1.

d 7→ φ(d)
d2 is a multiplicative function, and so f is a multiplicative function.

Therefore for n = pα1
1 · · · pαk

k > 1, if suffices to compute each f(pα); p prime:

f(n) = f(pα1
1 ) · · · f(pαk

k )
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f(pα) =
∑
d|pα

φ(d)

d2

=
φ(1)

12
+
φ(p)

p2
+ · · ·+ φ(pα)

p2α

= 1 +
p− 1

p2
+
p(p− 1)

p4
+ · · ·+ pα−1(p− 1)

p2α

= 1 + (p− 1)

[
1

p2
+

1

p3
+ · · ·+ 1

pα+1

]
= 1 +

p− 1

pα+1

[
1 + p+ · · ·+ pα−1

]
= 1 +

p− 1

pα+1

(
pα − 1

p− 1

)
= 1 +

pα − 1

pα+1

So

f(n) =

{
1 if n = 1(

1 +
p
α1
1 −1

p
α1
1

)
· · ·
(
1 +

p
αk
k −1

p
αk
k

)
if n has prime factorization pα1

1 · · · pαk

k

.

Quadratic reciprocity Problem. What can you say about primes of the
form

p = x2 + 2xy + 4y2?

Solution.
x2 + 2xy + 4y2 = (x+ y)2 + 3y2.

Therefore,
(x+ y)2 ≡ −3y2 (mod p). (∗)

Note that p = 3 is such a prime, take x = −1, y = 1.

Let’s assume p ̸= 3.

If p | y, then (∗) implies that p | x.

Therefore,
p2 | x2 + 2xy + 4y2 = p,

a contradiction.

Therefore, p ∤ y, and so there is a z s.t. zy ≡ 1 (mod p), and so

(z(x+ y))2 ≡ −3(zy)2 ≡ −3 (mod p)
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=⇒
(
−3

p

)
= 1

1 =

(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2

(p
3

)
(−1)

3−1
2 · p−1

2

=
(p
3

)
=⇒ p ≡ 1 (mod 3).

In the third equality, we used quadratic reciprocity in addition to(
−1

p

)
= (−1)

p−1
2 .

We conclude that p = 3 or p ≡ 1 mod 3.
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